

Assembly Language
Programming

For the Apple II®

Assembly Language
Programming

For the Apple II®

By Robert Mottola

Osborne/McGraw-Hill
Berkeley, California

Published by
Osborne/McGraw-Hill
630 Bancroft Way
Berkeley, California 94710
USA

For information on other Osborne books, translations
and distributors outside of the U.S.A., please write
Osborne/McGraw-Hill at the above address.
Apple, Apple II, Apple II Plus, and Applesoft are registered trademarks
of Apple Computer Inc. Assembly Language Programming for the Apple
II® is not sponsored or approved by or connected with Apple Computer
Inc. All references to Apple, Apple II, Apple II Plus, and Applesoft in
the text of this book are to the registered trademarks of Apple Com
puter Inc.
The LISA Assembler is a trademark of Lazer Micro Systems.

The S-C Assembler is a trademark of S-C Software.

Assembly Language Programming for the
Apple II*

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a data base or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be
entered, stored, and executed in a computer system, but they may not be reproduced for distribu
tion or publication.

ISBN 0-931988-51-9

2 3 4 5 6 7 8 9 0 HCHC 89098765432

Cover design by Timothy Sullivan.

Contents

Introduction ix

1 The Assembler and Hexadecimal Numbers 1

2 Writing Code 7

3 Entering and Editing Code 11

4 Assembling a Source Program 17

5 Using Labels 23

6 Making the Program Run at Different Locations 29

7 The Concept of Registers 35

8 Loads, Stores, and Transfers 37

9 Simple Arithmetic Operations 45

10 Different Addressing Modes 59

11 Branching and Looping 65

12 Indexed Addressing 79

13 Equivalent Values and the Negative Flag 91

v

vi

14 Logic Functions 93

15 Debugging Instructions 101

16 The Stack 105

A Instructions Not Covered in this Book 111

B Where to Go from Here 115

C Some Apple II Assemblers 119

D LISA, Applesoft Tool Kit, and S-C Assembler Directives 121

E Interfacing with the Monitor, DOS, and Applesoft BASIC 123

F Summary of 6502 Instruction Set 125

Index 139

Acknovvledgments
There are many factors that could have easily prevented this book from
ever seeing a printing press. Luckily for me, I know many talented peo
ple who've helped me get it all together. I'd especially like to thank Patty
Henry for some serious amounts of typing; Nancy Wilson for proofread
ing; and the folks at Cyborg Corp. for putting up with everything
involved. Also, special thanks to B. C. Bell, who booted me into this
whole business in the first place.

RM

Introduction
If you've been using your Apple II computer for some time, you've had
a chance to learn BASIC and develop your own programs. Although
there were some frustrating moments, you managed to master the fun
damentals of programming in BASIC, and succeeded in running your
programs on the computer. Then you ran across the term "assembly
language.''

Maybe you saw an advertisement in a computer magazine proclaim
ing, "This program is superior to others because it is written entirely in
assembly language." Or perhaps you noticed that a certain game pro
gram ran much faster than another because it was written in assembly
language. You decided to learn how to program in assembly language.
When you started to read about it, however, you were besieged with
unfamiliar concepts - Boolean operators, symbol tables, pseudo-ops,
mnemonics.

You shouldn't be intimidated by all these new terms. Learning to
program in assembly language is no harder than learning to program in
BASIC. In fact, for most people it is actually easier. Please note a pri
mary law of computer programming: all computer languages are alike.
They all have to do the same types of things so they all have the same
types of logical constructs. Therefore, since you already know how to
program in BASIC, you should find it easy to learn assembly language.

One of the problems with getting started in assembly language pro-

ix

x

gramming is that the majority of the books available on programming
the 6502 are reference books. These, like the Applesoft BASIC Program
ming Reference Manual, are useful once you've learned the basics of the
language. The purpose of this book is to instruct you in assembly
language programming so that you can take advantage of these
reference books. Also, the appendices of this book have more informa
tion which you will find useful once you have mastered assembly
language programming for the 6502.

Appendix A discusses the 6502 instructions not covered in this book.
The definitions are very terse, so if you'd like to use any of these
instructions, you may want to read up on them in one of several
general-purpose 6502 programming books mentioned in Appendix B.

All of the books listed in Appendix B cover the entire 6502 instruc
tion set, not just the instructions discussed in this book. Also listed in
this appendix are some other resources which can help in your assembly
language programming.

Appendix C is a short discussion of assemblers for the Apple II,
including important advantages and disadvantages. This information
should help you make a choice on which assembler to buy, or which one
to buy next.

Appendix D is a comparison chart showing equivalent assembler
directives for a few different assemblers.

For those who want to put newly found assembly language program
ming knowledge to work immediately, Appendix E contains tips on how
to interface assembly routines with the Apple II's monitor, Applesoft
BASIC, and DOS.

Finally, Appendix F contains a chart of the 6502 instruction set.
This book is a tutorial and, like the Applesoft tutorial that probably

introduced you to Applesoft BASIC programming, will guide you
through some of the simpler assembly language programming pro
cedures. Explanations are given with equivalent examples in BASIC
whenever possible. The routines shown provide a relatively simple way
to integrate the power of assembly language routines into your BASIC
programs.

1
The Assembler and

Hexadecimal Numbers
Before you can begin programming in assembly language, you'll need
an assembler. An assembler is a program that converts 6502 mnemonics
and operands into 6502 machine language code.

In simple terms, the assembler takes three-letter instruction
"names" (mnemonics) and converts them into 8-bit binary numbers
that the machine (that is, the 6502) can understand. Table 1-1 illus
trates this translation process. For example, every time an assembler
sees a JMP, it converts it to the hexadecimal number $4C. Whenever it
sees a JSR, it converts it into the hex number $20, and so forth .

Although the assembler does a little more than that, what is impor
tant to understand now is that the assembler is a tool. With it, you don't
have to remember all of the different numbers that the 6502 can under
stand. Instead, you just have to remember different names that com
prise the 6502 instruction set (see Appendix F) .

Several assemblers are readily available for the Apple II. A list and
short description of some available assemblers can be found in Appen
dix B.

1

2 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

Table 1-1. Assembler translation process

Mnemonic Machine Language Value

(Name)
Meaning

Hex Binary Decimal

Jump to a new location
JMP (same as BASIC $4C 0100 1100 76

"GOTO")

Jump to subroutine
JSR (same as BASIC

"GOSUB")
$20 0010 0000 32

Return from
RTS subroutine (same as $60 0110 0000 96

BASIC "RETURN")

THE HEXADECIMAL NUMBER SYSTEM

Like all other microcomputers, the Apple II uses binary arithmetic for
all its internal operations. Unfortunately, humans don't. To compensate
for this, programmers have developed a numbering system known as
hexadecimal. Hexadecimal numbers are used because they are easy to
learn, and they translate directly into numbers that the computer can
understand.

To better understand this, consider the way the hexadecimal system
works.

Learning hex isn't nearly as hard as you might believe. In fact, hex
adecimal notation is easy. To start, understand that a hexadecimal num
ber can be from one to several characters long, and, for the sake of
clarity in this book, will always be preceded by a dollar sign. Be careful,
however, for some programmers use different labeling conventions.

The following are all hex values:
• $00
• $IA
• $23B
• $FDAE
• $27E5

Note that all of these examples are preceded by a dollar sign to signify
that they're hex. Also note that some of the characters are letters as well

CHAPTER 1 •THE ASSEMBLER AND HEXADECIMAL NUMBERS 3

as numbers. Hexadecimal values not only use the digits 0 through 9, but
also the letters A through F; where the decimal system has ten digits,
the hexadecimal system has 16.

Counting in the decimal system, if you start at 0, you can count on
your fingers all the way up to 9. After reaching 9, go back to the begin
ning and note that we've already been through the count once. This
repetition puts the count into the ten's column. Each time we go
through a count of ten, we increment (add 1 to) the ten's column.

ten's
l ~ne's
10. 21. 32. 43. etc.

Of course, when we run out of second-column digits, we just start
another column.

thousand 's

hl~~~·~ed's lhi~~~·~ed 's
l ~ne's ! ~ne's

99, 100, 999. 1000, etc.

As you can see, the digit in each new column is always ten times that of
the previous column.

For counting in hex, let's say that we have 16 fingers instead of ten.
Starting at 0, we could count 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

We used the letters A through F to continue the count after running
out of numerals. Finally, at F we've run out of fingers . As in decimal
counting, we start again at the beginning and note that we've gone
through the count once.

However, to avoid confusing the hex value with the decimal value,
precede hex values with a dollar sign, as in $10. Remember, this is the
hexadecimal value $10; so instead of the 1 being in the ten's column,
it's in the 16's column. We could keep counting this way, incrementing
the count column each time we use up our 16 fingers .

sixteen's
i ~ne's

.. . $20. $30. $40 $AO. $BO. $CO, etc.

Just as in decimal counting, when we run out of digits in the leftmost
column, we simply add another column.

4 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

256's

1 ten 's
l ~ne's

... $FF. $100. $101 . etc.

Thus, the value of the character in each column is 16 times that of the
column to the right of it. This is similar to decimal values where we have
a one's place, a ten's place, a hundred's place, and so forth . In hex we
have a one's place, a 16's place, a 256's place, and so forth.

Hex to Decimal

Converting a hexadecimal value to decimal is easy. All you have to
remember is that each successive column's value is 16 times that of the
next column. Let's convert $8D to decimal.

To convert the D in the one's column, we count to D on our 16
fingers to see that it has the decimal value of 13 . Since it's in the one's
column, we must multiply it by 1, which yields 13.

Next, we see we have an 8 in the 16's column. We don't have to
count to 8 on our 16 fingers, since we are already familiar with what an 8
means. So, multiply 8 by 16, since it appears in the 16's column.

8 x 16 = 128

Now add the two columns together.

13 + 128 = 141

Thus, $8D = 141. Now, try converting the other way around.

Decimal to Hex

Converting decimal values to hex is just as easy. Try the number 250.
Begin by assuming the hex number will occupy four places. We start

with the last place, which in this case is the fourth, or 4096's place.
Divide the decimal value by 4096 and get an integer answer. This would
be calculated in BASIC as follows:

PRINT INT (250 I 4096)

The answer is 0. Write that down as the value of the fourth digit (4096's
place) as in the following: $0---. Since the answer was 0, try dividing the
number by the next place, 256.

PRINT INT (250 I 256)

Again , the answer is 0. Write down the following: $00--. Now, divide by
the next place, which is 16.

PRINT INT (250 I 16)

CHAPTER 1. THE ASSEMBLER AND HEXADECIMAL NUMBERS 5

This time the answer is 15, so in the 16's column, write down the hex
equivalent of the value 15, which is an F, as follows: $00F-. Finally, take
the remainder of the above division, which is 10, and convert it to its
equivalent hex digit, A. Put this in the one's column, and the answer
will be $00F A. The leading Os can be eliminated, so 250 = $FA.

Even though this answer is smaller than four hex places, it is a good
idea to start the conversion calculation with the 4096's place. This is
because the largest address the Apple II can access is $FFFF (decimal
65,535); starting with the 4096's place eliminates any chance of
miscalculation.

2
Writing Code

To begin writing some assembly language code, we will need the follow
ing:

• 48K Apple II or Apple II Plus with disk and Applesoft in ROM , or
Language Card

• An assembler
• A pad and some pencils

• An 80-column printer (preferred).

One more item would be extremely useful: the TI Programmer. This
calculator performs the tiresome job of converting decimal to hex
adecimal, and vice versa, and performs some logical operations as well
as regular math. At about $50, it costs about the same as a good assem
bler (maybe less) and is the single most useful tool for computer pro
gramming, next to your computer. You should be able to get one at
your computer or calculator store.

The pad and pencils are important to write down our programs first to
assure they'll work when we try to run them. This also helps show how
each line must be entered into the computer.

7

8 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

STRUCTURE OF A LINE

Consider the following section of BASIC code:

10 REM SUBROUTINE TO OUTPUT AN ASCII CHARACTER
20 8$ = CHR$ (CH)
30 PRINT 8$;
40 RETURN

Obviously, no matter what is on a line, each line of BASIC code has
two distinct parts - the line number and the instruction. Assembly
language source code lines are also divided into parts, or fields. They
have a place for both a line number and an instruction, but they also
have a place (or a field) for three other things: a label, an operand, and a
comment. Typical assembly language code might look like Table 2-1.

As can be. seen from this example, each line of assembly language
source code must have both a line number and an instruction
mnemonic. Some lines also have labels, operands, and comments, but
these are not always required. To find out why, each field will be dis
cussed separately.

Table 2-1. Typical assembly language code

Line No. Label Mnemonic Operand Comment

1000 ST ART JSR PRINT ;OUTPUT THE CHARACTER ONCE,
1010 JSR PRINT ;THEN OUTPUT IT AGAIN ,
1020 RTS ;THEN RETURN.
1030 END

Line Number

Just as in BASIC, line numbers are used in assembly language as an aid
to editing. For instance, in BASIC we can say LIST 100, and line 100 will
be displayed on the screen. If we say delete (DEL) 200,400, then the
lines numbered 200 through 400 will be deleted. The same is true in
most assemblers.

Label

In BASIC line numbers serve another useful purpose in that they serve
as targets in the BASIC code for GOSUBs and GOTOs. In BASIC we

CHAPTER 2 WRITING CODE 9

can GOTO or GOSUB a line number, but in assembly language we can
do something even better. We can do the equivalent of GOSUBing or
GOTOing a label. This feature makes it easier to see what the program is
doing and allows the program to GOTO or GOSUB a routine without
knowing exactly where it is by simply calling its name (LABEL). Most
assemblers only allow labels to be six characters long, but they can be
just about any combination of letters or numbers. That is usually
enough to make a descriptive name for a location.

Consider the code shown previously in this chapter. The first two
lines perform JSRs Gump to subroutine) labeled "PRINT." Even with
out the comments describing the function of the line, we could probably
derive it just from the label. The reason is, of course, that the label tells
what the subroutine does.

If, in BASIC, you saw a line that read GOSUB 2000, you'd have to
look at line 2000 to determine what's going on. In well-written assembly
language programs, the labels give a good indication of what a routine
does.

To give an example of the power of labels, try some identification.
Several useful assembly language subroutines are built right into the
Apple II. Three that are stored in the F8 ROM have labels HOME,
VLINE, and SCROLL. Without even looking at the code, it's easy to
determine what function these subroutines perform. This is why labels
are such a convenient way of identifying locations.

Remember, unlike a line number, a label is not required in every as
sembly language line. Only those lines that will be "branched to" or
otherwise referenced will need labels.

Mnemonic

This field contains the instruction's mnemonic or operator. In 6502 as
sembly language, all instructions have three-letter mnemonics. These
indicate the specific operation that is to take place. This is unlike BASIC,
where the instructions are in the form of English words like NEW, IF,
THEN, and so forth . Also unlike BASIC, assembly language allows only
one operation per line. Every line must have an instruction, so this is
not an optional field.

Operand

In BASIC, instructions like TEXT, GR, RETURN, and POP operate on
their own. They do not change any data and, as such, do not require an

1 Q ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

operand. On the other hand, BASIC instructions like INPUT, GOSUB,
or SPEED= are a little different in that they all need operands. A simi
lar situation exists with assembly language instructions. This is not an
optional field, then. An operand is required in the operand field if it is
needed by the instruction in the mnemonic field.

Comment

Another good feature of assembly language is the comment field. This is
a free field into which anything can be put. It is similar to the REM state
ment in BASIC, only it is available on every line. As with BASIC, good
assembly language programs should be heavily commented.

NOTE: On assemblers, the first character of the comment field must be
some special character, like a(;) or an (*)depending on which assembler
you use.

SUMMARY

Before proceeding to the next chapter a review of the similarities and
differences between BASIC and assembly language is in order. Consider
the following:

• Both BASIC and assembly language code have line numbers and state
ments.

• Each line of assembly language also has room for labels and comments.
Assembly language statements are further broken down into mnemonic
instructions and operands.

• In BASIC you can only branch to a line number; in assembly language you
brn.nch to a label.

• BASIC instruction words can be of different lengths, while all assembly
language instructions are three-character mnemonics.

• Comments are important in both languages.

3
Entering

And Editing Code
Entering and editing code in BASIC is no more complex than booting
up your machine, waiting for the BASIC prompt character (] or >),
and starting to enter code. Editing commands like DELETE, LIST, and
NEW are an aid when it's time to modify the code.

Text entry and editing in most assemblers is just as simple. The as
sembler described here, LISA, has text entry very similar to that of
Applesoft BASIC, which is why it is used for most of the examples in
this book. Be aware, however, that this is one area in which most assem
blers part company. They all assemble mnemonics into machine code in
a similar way, but their methods of text entry are generally quite
different. The instructions in this chapter are given for the LISA assem
bler. If you are using a different assembler, you may use these instruc
tions as a guide. When in doubt, refer to the instruction manual that
accompanied your assembler.

The following is a sample subroutine that will give you some practice
with your assembler. This routine will clear the Apple II text screen and
beep the speaker twice. It is callable from BASIC or from the monitor.

1 HOMEBB JSR

2 JSR

$FC58

$FBDD

;JUMP TO SUBROUTINE AT $FC5B - THIS
;WILL HOME THE CURSOR AND CLEAR THE
;SCREEN

;JUMP TO SUBROUTINE AT $FBDD - THIS
;WILL BEEP THE SPEAKER

11

12 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

3 JSR $FBDD ;TWO TIMES

4 RTS ;THEN RETURN

The reason the program is so short is that it calls two machine
language routines already residing in the Apple II monitor ROM - one
that homes the cursor and clears the screen, another that beeps the
speaker.

To enter the code, insert the LISA disk in the drive and boot it. After
a display page is shown, LISA will be loaded and you will see the com
mand prompt character "! ".

There are a number of commands available from the LISA COM
MAND mode. The ones used for this exercise are LIST, INSERT,
DELETE, SAVE, ASM, CTRL-D, CTRL-E, and NEW. The following
paragraphs describe each command:

• LIST - The LIST command in LISA behaves just as it would in BASIC. If
you just type LIST, the entire program will be listed. If you type LIST
followed by one space and line number range (for example LIST 20,100),
just that line number range will be listed. Remember, there must be one
space between the LIST and the first line number.

• INSERT - The INSERT command allows the entry of text into LISA.
LISA automatically numbers lines starting with 1 and ending with the
number of lines in the program. Thus, a 20-line program would be num
bered 1-20. Since there are no "free" line numbers between any two lines
(such as in a BASIC program that was numbered by tens), the only way
you can put a new line between, say, lines 15 and 16 is to INSERT it. LISA
not only inserts the new line, but also renumbers all of the lines from 16 to
the end of the program accordingly.

Use of the INSERT command is very simple. If you wish to INSERT
code at the end of the program in memory (or, if there is no program in
memory and you want to begin one), just type INSERT. LISA will then
display the first available line number on the screen and allow you to type a
line. It will print the line number for the next line and wait for you to enter
it, and this will continue until you are done entering code. Then exit the
INSERT mode and return to the COMMAND mode by typing a CTRL-E
(for exit) followed by a RETURN.

As mentioned, you may also INSERT new lines into an existing pro
gram. Using the earlier example, to INSERT some new lines between lines
15 and 16, type INSERT followed by a space and then by the number of the
line which you want to insert the new code in front of. In this example, type
INSERT 16, because we want to INSERT more lines before line number
16. We can say, then, that the command "INSERT 16" actually reads
"INSERT (before line number) 16." As explained previously, when you

CHAPTER 3 ENTERING AND EDITING CODE 1 3

are done entering lines, type a CTRL-E to exit the INSERT mode.

• DELETE - As in BASIC, type the command DELETE followed by one
space and the range of lines that you wish to DELETE. If for example, we
wanted to DELETE lines 35 through 45, we could type DELETE 35,45.
Remember, the space between the DELETE and the first line number is
necessary.

• SA VE - As in BASIC, to save your program on disk after it's complete,
type SA VE (filename). When you want to retrieve your program again, use
this command's complement, LOAD (filename) .

• ASM - Once program editing is ended, you must assemble it into
machine-readable code so that it may be executed by the 6502. This com
mand allows that to happen. (This process will be discussed later.)

• CTRL-D - LISA allows you to execute any valid Apple DOS command
from the COMMAND mode. Things like CATALOG, LOCK, VERIFY,
DELETE, and RENAME are useful. To use any DOS command, first type
a CTRL-D, then the disk command that you want. If you wanted to display
the disk's CATALOG, you would type CTRL-D CATALOG and it would
be displayed.

• CTRL-E - When you are in the INSERT mode and you want to exit and
return to the COMMAND mode, you may type a CTRL-E as the first
character of a new line. This will return you to the COMMAND mode.

• NEW - Again, like BASIC, if you want to scrap the program you have in
memory and start over, use the NEW command.

NOTE: Most of the LISA commands do not need to be typed in completely
in order to be used. For example, you really don't have to type out the
word INSERT. Just the first letter "I" will do. For more on this , see the
LISA user's guide.

One of the commands that can be entered here is INSERT. After typ
ing it in, press the RETURN key and LISA will put a number 1 on the
screen, followed by the flashing cursor. You are now ready to enter line
1. LISA's text editor uses automatic line numbering, starting with num
ber 1. Every line entered will get the next available line number while in
the INSERT mode.

The LISA text editor is a free-form editor, which means that you will
not have to do much "tabbing over" to get all of the fields to line up
with one another. With this editor, there just has to be one blank space
between each field .

Enter the first line. The screen already has the line number "l" on it,
followed by the cursor. If the first line of the subroutine is typed with
one blank space between each field, it will look like the following exam-

14 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

pie (note that LISA requires that the comment field begin with the
semicolon character):

1 HOMEBB JSR $FC58 ;JUMP TO SUBROUTINE AT $FC5B - THIS WILL
;HOME THE CURSOR AND CLEAR THE SCREEN

Before pressing the RETURN key, check the line to make sure every
thing is in order. Is there one space between each of the fields? Is the
mnemonic (JSR) spelled correctly? Does the comment field begin with
a sem icolon?

If everything looks fine, press the RETURN key. One of the features
of LISA is that it checks the syntax of each line as you enter it, just as
Apple Integer BASIC does. If it finds something wrong with what is
typed, a beep will result and an error message will be displayed. You will
then be allowed to reenter the line.

If no error occurs, LISA will accept the line and print a 2 to indicate it
is ready for you to enter line number 2. This line should read

2 JSR $FBDD ;JUM P TO SUBROUTINE AT $FBDD - THIS WILL BEEP
;THE SPEAKER

Remember, since there is no label on this line, a space must be typed
before entering the mnemonic. If you don't, an error will result when
you press the RETURN key. Again, once everything is correct, you'll
see the next line number.

If things are proceeding smoothly, enter the remaining lines, but
remember the spaces between fields. When you've finished entering
text and no mistakes or error messages have resulted, your screen will
look like this:

1 HOMEBB JSR $FC58 ;JUMP TO SUBROUTINE AT $FC5& - THIS
;WILL HOME THE CURSOR AND CLEAR THE
;SCREEN

2 JSR $FBDD ;JUMP TO SUBROUTINE AT $FBDD - THIS
;WILL BEEP THE SPEAKER

3 JSR $FBDD ;TWO TIMES

4 RTS ;THEN RETURN

Although all text has been entered, LISA is awaiting the next line. Since
no more text is to be entered, exit the INSERT mode by typing a CTRL
E and pressing RETURN. LISA will now return to the COMMAND
mode and display the "!" prompt.

Examine the code to be sure the assembler sees it the same way it was
typed. Type the command LIST, and your text will be displayed. Notice
it's been formatted neatly in columns. Except for the screen wraparound

CHAPTER 3 ENTERING AND EDITING CODE 1 5

of some of the comments, it should look like the example subroutine. If
it doesn't, or if problems have developed while entering the text, start
over and try again. Just as in BASIC, the command NEW will clear the
memory and allow you to start over. To verify that, type LIST. No code
should be listed, and you're ready to try again .

Once the code is correct, you're almost ready to begin your first as
sembly. But first, the assembler must know where the code ends. Put
the mnemonic "END" as the last instruction in the code. To do this,
enter the INSERT mode by typing INSERT. This allows insertion of
more code at the end of the present file . LISA will respond with line
number 5. Enter 5 END. Remember to type a space before you type
END to "pass over" the label field. Since END does not require an
operand, and since no comments are needed on this line, press
RETURN after the END.

Exit the INSERT mode with a CTRL-E. Back in the COMMAND
mode, type LIST to make sure that everything is in order. The code
should look like

1 HOMEBB JSR

2 JSR

3 JSR

4 RTS

5 END

$FC58

$FBDD

$FBDD

;JUMP TO SUBROUTINE AT $FC5B - THIS
; WILL HOME THE CURSOR AND CLEAR THE
;SCREEN

;JUMP TO SUBROUTINE AT $FBDD - THIS
;WILL BEEP THE SPEAKER

;TWO TIMES

;THEN RETURN

If your code differs, it might be advisable to erase it all by using NEW
and try again.

Once the code is correct, you should save it on disk. Label it HOME
AND BEEP. However, add a file suffix, .SRC, to indicate that this is an
assembler source file. The different types of files will be discussed later.
For now, just call this file HOME AND BEEP.SRC. In order to save the
program, type SAVE HOME AND BEEP.SRC.

The disk drive should turn on and the disk operation BSA VE HOME
AND BEEP.SRC will be printed on the screen. Your first assembly
language source file has now been saved.

If you wish, you may print out your listing on a printer. First, turn on
the printer by typing CTRL-D followed by the familiar PR:#:l command,
assuming that a printer card is in slot number 1. Once the printer is
turned on, type LIST and your listing will be printed. To turn off the
printer, type CTRL-D PR:#:O.

4
Assembling a

Source Program
Two words that haven't really been discussed yet are "assembly" and
"source." Since we are about to assemble a source program, a discus
sion of each is now in order.

BASIC, in reality, is an assembly language program located between
$EOOO and $F7FF in the Apple II computer. When you run a BASIC
program, the assembly language program interprets the BASIC program
by looking at each BASIC statement. For example, the following illus
trates the program and its interpretation:

10 GR

"Time to turn on the LORES graphics mode and clear the screen."

20 COLOR= 1

"I'll set the LORES color byte for BLUE."

30 PLOT 10. 10

"Want to plot a box? First I'll find the address of the tenth row, then
I'll find the tenth column, then I'll put a blue box there."

Although the computer doesn't actually talk to itself, it does go
through the same process of deciphering the meaning of a BASIC state
ment and then executing the appropriate assembly language code to per
form the function. This is why BASIC is known as an "interpreter."

Assembly language works somewhat differently. The brief program
written in the last chapter will never be executed directly, nor will it be

17

18 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

interpreted by the assembler in real time.
To make it executable, it must be "assembled." Assembly is the pro

cess of taking those programs (called "source programs") that we can
read and converting them into machine language object files that the
6502 can read and execute. When we finish an assembly, we will have
our old source file still intact. In addition, we will also have the new,
machine-readable object file. Schematically, it is something like the
following:

Source Code - Assembler - Object Code

Again, nothing gets destroyed in the process, but a new file type is
created.

Why couldn't an assembler just interpret source code, the way BASIC
does BASIC programs? Why generate a whole new file type? From a
practical point of view, the answer to both questions is speed. An
interpreter could be developed that would interpret assembly language
source code the same way BASIC interprets BASIC code; but, like
BASIC, it would take a long time to execute. The machine language
object code generated by an assembler, however, executes as fast as
possible for the 6502. The reason for this is simply that this code is
executed directly by the 6502, not by some intermediary interpreter.

Before actually assembling a sample program, familiarize yourself
with these important concepts:

Source code - This is the human-readable text containing the labels,
mnemonics, and so forth, that an assembler will actually "assemble" into
machine language "object code."

Object code - This is the object of assembly. It is code in the machine
language of the 6502 (that is, code that can be read directly by the 6502
microprocessor).

Assembler - This is a program that reads in source code and "assembles"
from it machine language object code.

ASSEMBLING THE SAMPLE PROGRAM

If everything has gone according to plan, the sample source code we dis
cussed in Chapter 3 has been saved on disk under file name HOME
AND BEEP.SRC. It is possible that the code is still in memory. To find
out, type LIST. If it is still there, fine. If you've turned off your com-

CHAPTER 4 ASSEMBLING A SOURCE PROGRAM 1 9

puter, you'll have to boot and load your assembler again, following the
directions presented in the last chapter. Then type LOAD HOME AND
BEEP.SRC to reload the source program into the machine. To verify it
is there, type LIST.

You are now ready to assemble the program. Type ASM followed by a
RETURN. The original program should be relisted, with a few extra
items added to each line. If the entire assembly listing is not on the
screen, generate another on the printer. To do this, turn on the printer,
using the CTRL-D PR#l for the LISA assembler. Type ASM again to
generate the listing.

NOTE: In the LISA assembler, all disk commands other than LOAD and
save must be preceded by a CTRL-D.

Use (CTRL-D) PR:#:O to turn off the printer. If a printer is not availa
ble, check the listings provided.

Assuming that the assembly did not end in an error message, your
first assembly language program has been successfully assembled. If the
assembly did end in an error message, find out why. As in BASIC, as
sembler error messages are very specific and should pinpoint the prob
lem. Using the instructions in the previous chapter, correct the prob
lem, and try again. Your assembly language program should look like
the following:

**END OF PASS 1
**END OF PASS 2

0800 2058FC l HOMEBB JSR $FC58

0803 20DDFB 2 JSR $FBDD

0806 20DDFB 3 JSR $FBDD
0809 60 4 RTS

5 END

***** END OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *

* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

** ABSOLUTE VARIABLES/LABELS

;JUMP TO SUBROUTINE AT $FC5B
;- THIS WILL HOME THE CURSOR
;AND CLEAR THE SCREEN
;JUMP TO SUBROUTINE AT $FBDD
;- THIS WILL BEEP THE SPEAKER
;TWO TIMES
;THEN RETURN

20 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

HOMEBB 0800

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OOlA

Examine the assembly listings generated. They look similar to the
original source listings, but they have two fields added. These are the
"address" or "program counter" field , and the "machine code" or
"hex dump" field, respectively. The "address" or "program counter"
indicates the address in memory of the first byte of the machine
language code generated by a line. The "machine code" or "hex
dump" indicates the actual hex values that are in memory at that loca
tion. These two fields will be useful for many different things, some of
which will be discussed in later chapters.

SAVING AND TESTING THE OBJECT CODE

Before attempting to run the newly assembled code, first save it on disk .
Since it is machine language code, save it as a binary file. To do this, you
must know both its starting address and its length. To determine both of
these, refer to the listing. Look at the first line of the assembly listing. In
the program counter field is the number 800. This is the starting address
(in hex, of course) of the program. Look at the program counter field
for the last line. It should contain an 809. This is the address of the end
of the program. Therefore, to find the length of the program, subtract
the starting address from the ending address, and add 1 to the result.

809 - 800 = 9
9 + 1 =$A

The answer, $A, is the length of the program. To save the object pro
gram, type (CTRL-D) BSAVE HOME AND BEEP.OBJ,A$800,L$A.
Remember to type a CTRL-D before the BSA VE when using the LISA
assembler. Note that the object code is saved using the same name as
the source code, but with the suffix .OBJ. This practice is generally
recommended because it keeps things easy to understand and allows
you to determine which object file was generated from a source file.

Once the object code is safely saved on disk, it's time to run the pro
gram. If you are using the LISA assembler, type BRK followed by a
RETURN. The Apple should beep, and the asterisk (•) prompt
character of the monitor will appear. Since the object code is located at
address $800, type 800G. The screen should clear, the cursor should go

CHAPTER 4 ASSEMBLING A SOURCE PROGRAM 21

to the home position, and the Apple should beep twice. If it did not
work, something is probably amiss in the source program. Refer to the
steps used to enter code in the previous chapter and reenter the code.
Make sure all lines are there and make sure that the addresses in the
operand field are correctly typed.

If everything worked correctly, you've learned how to use your as
sembler, write your first assembly language program, and assemble and
run it.

GOING FURTHER

The following chapters will delve deeper into assembly language pro
gramming. However, now might be a good time to carefully read over
the user's manuals that came with your assembler (particularly those
chapters concerning the entry and editing of source code). In Chapter 3,
only a few assembler commands were discussed. Most assemblers con
tain many other editing features that make text entry easy. You may not
want to use them all at this time, but you should be aware of their exis
tence.

Since subsequent chapters will discuss the various instructions and
addressing modes of the 6502, it might be helpful to keep a copy of the
assembler manual nearby.

5
Using Labels

In the program discussed in the previous chapters, you were introduced
to the label feature of our assembler. Now let's learn how to fully use
this feature. Consider the following program once again:

l HOMEBB JSR $FC58 ;JUMP TO SUBROUTINE AT $FC58 - THIS WILL
;HOME THE CURSOR AND CLEAR THE SCREEN

2 JSR $FBDD ;JUMP TO SUBROUTINE AT
;BEEP THE SPEAKER

3 JSR $~'BDD ;TWO TIMES

4 RTS ;THEN RETURN

By using lines of the form

JSR $FC58

$FBDD - THIS WILL

it is not particularly easy to determine, especially at a later date, just
what that line does. Instead, the following statement could be used:

JSR HOME

This jump to the subroutine, entitled HOME, is much easier to
follow than a simple jump to an address. Consider this BASIC example.
A printer driver routine has been written and stored at location $300
(768 decimal). This printer driver is capable of printing not only text but
LORES graphics as well. Consider the following ways to turn it on:
CALL 768 for text, and CALL 782 for LORES graphics. In addition, to
turn off the driver, there's a third call - CALL 802. The three calls

23

24 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

must be used to deal with the hypothetical printer driver. To use this
driver in a long BASIC program, many calls would be made to these
various locations which turn on and turn off the driver. When examin
ing the program, we'll either have to know just what these numbers
mean or comment them well.

Consider this sample program segment:

20 00 CALL 768
2010 PRI NT "NEW PAGE"
2020 CALL 8 0 2
2030 CALL 782
20 40 GR : COLOR = l
2050 HLI N 0, 20 AT 1 5
2060 CALL 80 2

It's reasonably difficult to determine what all these calls do, even
though the references for these numbers are present.

Consider another method. Instead of calling the constants that repre
sent each location, define those values to variables in the beginning of
the program. For the sake of simplicity, give those variables logical
names.

10 TEXTON = 768
20 LORESON = 782
30 OFF = 80 2

2000 CALL TEXTON
2010 PRINT "NEW PAGE"
2020 CALL OFF
2030 CALL LORESON
2040 GR : COLOR = l
2050 HLIN 0,20 AT 15
206 0 CALL OFF'

Obviously, this is much easier to understand. The names of the varia
bles were chosen specifically to identify their functions .

This label format has another useful function. Suppose that the
hypothetical printer driver had to be moved to another location, so that
another machine language subroutine could be put at $300. This
requires going through a long BASIC program, finding all of the CALL
768s, CALL 802s, and so forth, and changing all of them to the new
addresses . Choosing the labeling format is much better. In this case, all
that would be required is going to the beginning of the BASIC program,
finding the three statements where values are assigned to the labels, and
changing them to their new addresses.

The same is true with assembly language programs. It is much cleaner
to define labels for addresses that are used in the beginning of a pro-

CHAPTER 5 USING LABELS 25

gram. In BASIC this is accomplished with the LET statement. In assem
bly language this is accomplished with EQUATEs.

SAMPLE PROGRAM

Let's develop another short assembly language program. This one will
print the word "ERR" on the screen, beep the speaker twice, and print
three spaces, followed by no carriage return. Such a program could be
used to signal an error. Like the previous example, this routine uses
machine language subroutines that already exist in the Apple II monitor
ROM. The routines to be used are

• $FF2D - Prints "ERR" and beeps speaker once.
• $FBDD - - Beeps speaker once.
• $F948 - Prints three blanks.

Give these three addresses meaningful labels. Better still, since a
complete source listing is available, look to see what labels Apple has
already given to these addresses. The Apple II reference manual pro
vides a complete source listing of the monitor. Following the program
counter field, locate the addresses given above and find their respective
labels. They are

• $FF2D - PRERR
• $FBDD - ?
• $F948 - PRBLNK

Unfortunately, $FBDD doesn't have a label, so one will have to be
made. Looking at the code around address $FBDD, note a label BELLI
above it and a label BELL2 below it. Assign $FBDD the label BELLlA
for use here.

It is generally advisable to use existing labels if using code that has
been written and well documented by others. This labeling ensures that
no one will be confused if they see your code because it refers to a
subroutine that is used quite often.

The LISA assembler has two mnemonics for EQUATE. One is EQU
which stands for "EQUATE." The other is EPZ, which means
"EQUATE to Page O." In the 6502, Page 0 in memory (locations
$0-$FF) has special significance. Remember to use EPZ for any value
less than $100, and EQU for any value from $100 on up.

26 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

Boot the LISA assembler, get into the command mode (!) , type the
INSERT command, and enter the code. If problems arise, check the
instructions in the LISA user's guide, or refer to the explanations on
text entry in the last chapter.

Here is the program:

l PRBLNK EQU $F948
2 BELLlA EQU $FBDD
3 PRE RR EQU $FF2D
4 ERROR JSR PRE RR ;PRINT "ERR"
5 JSR BELLlA ;BEEP SPEAKER
6 JSR PRBLNK ;PRINT 3 BLANKS
7 RTS ;THEN RETURN
8 END

Remember, you need only one space between fields, but you must put
in a space to skip over a field. If no mistakes are made, the code should
look like the following as you enter it:

1 PRBLNK EOU $F948
2 BELL 1 A EOU $FBDD
3 PRERR EOU $FF2D
4 ERROR JSR PRERR
5 JSR BELL 1A
6 JSR PRBLNK
7
8
9

RTS
END

;PRINT "ERR"
; BEEP SPEAKER
;PRINT 3 BLANKS
;THEN RETURN

Type CTRL-E to exit the INSERT mode, then type LIST to list the
code. The listing should look similar to the original above, except, of
course, for screen wraparound of the comments.

long Comments and Blank lines

To have a whole line of comments, not just comments in the comment
field, put a semicolon (;) as the first character in the label field. The rest
of the line can then be used for comments.

To put this new tool to good use, title the subroutine. To do this,
insert more code at the beginning of the program. From the COM
MAND mode, type INSERT 1. LISA will respond with the (new) line
number 1. Type in the following header:

1 *************************

2 ;THIS SUBROUTINE WILL
3 ;PRINT " ERR". BEEP
4 ;THE SPEAKER TWICE.

5 ;THEN PRINT 3 BLANKS
6
7
8
9

CHAPTER 5 USING LABELS 27

Lines 7 and 8 contain only semicolons and are used to provide blank
lines for readability.

Exit the INSERT mode (CTRL-E) and list the code. Add one more
thing to visually separate the EQUATE from the body of the program.
Enter the following lines 11 and 12:

11 PRERR EOU $FF2D
12 ERROR JSR PRERR ;PRINT "ERR"

Separating the lines with some blank comment lines will make it
easier to read. From the COMMAND mode, type INSERT 12 (which
means, insert before line number 12). When LISA prompts you with
the line number, type a semicolon and a return for each line, as in the
following:

12
13 ;
14

Exit the INSERT mode with a CTRL-E, then list the program. It should
look like the following:

l ·************************* I

2 ;THIS SUBROUTINE WILL
3 ;PRINT "ERR" I BEEP
4 ;THE SPEAKER TWICE,
5 ;THEN PRINT 3 BLANKS
6 ·************************* I

7
8 ;
9 PRBLNK EQU $F948
10 BELLlA EQU $FBDD
11 PR ERR EQU $FF2D
12
13 ;
14 ERROR JSR PRE RR ;PRINT "ERR"
15 JSR BELLlA ;BEEP SPEAKER
1 6 JSR PRBLNK ;PRINT 3 BLANKS
17 RTS ;THEN RETURN
18 END

If things are still working smoothly, save this file on the disk and as
semble it. Use ERROR SUB.SRC for a file name. To save a source file ,
type SA VE ERROR SUB.SRC. The program will be saved on the disk.
To assemble, type ASM.

28 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

Barring any errors in the source code, a complete assembly listing will
appear on the screen.

Printing the Program

If you have a printer available, it is helpful to print the assembly listing
for later examination. To turn on the printer, type CTRL-D PR*l, then
type ASM to generate an assembly listing. Then turn off the printer with
CTRL-D PR*O.

-s
Making the Program Run
At Different Locations

Here is a complete assembly listing for the sample routine assembled in
the previous chapters. Carefully check it against the one generated on
your assembler. Pay particular attention to the program counter field .

**END OF PASS l
**END OF PASS 2

ObOO l ·************************* I

0800 2 ;THIS SUBROUTINE WILL
0800 3 ;PRINT "ERR", BEEP
ObOO 4 ;THE SPEAKER TWICE,
0800 5 ;THEN PRINT 3 BLANKS
0800 6 ;*************************
0800 7
0800 8
0800 9 PRBLNK EQU $F94b
0800 10 BELLlA EQU $FBDD
0800 11 PR ERR EQU $FF2D
0800 12
0800 13
0800 202DFF 14 ERROR JSR PR ERR PRINT "ERR"
Ob03 20DDFB l'"> JSR BELLlA BEEP SPEAKER
0806 2048F9 16 JSR PRBLNK PRINT 3 BLANKS
0809 60 17 RTS THEN RETURN

18 END

***** END OF ASSEMBLY

* *
*SYMBOL TABLE -- V l.'"> *

* *

29

30 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

LABEL. LOC. LABEL. LOC . LABEL. LOC.

** ZERO PAGE VARIABLES:

** ABSOLUTE VARIABLES/LABELS

PRf>LNK F948 BELI,lA FBDD PRERR FF2D ERROR 0800

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0032

As you scan the program counter field, notice that the value for the
program counter on the first line of the program is $800, just as on the
second and third lines. In fact, it remains at $800 until the first line of
the body of the program, the line with the label ERROR.

As previously discussed, the machine code will be located at the
memory address indicated in the program counter field. Remember that
the machine language object code generated by an assembly will be read
and executed directly by the 6502. Consequently, the reason the com
ment lines at the beginning of the program did not advance the program
counter is that the assembler did not generate any object code for them.
They are there only for the programmer's benefit, so the assembler
skips over them, just as the BASIC interpreter skips over REM state
ments.

The assembler did not advance the program counter on the lines with
the EQUATEs on them because EQUATEs, like comments, are not
executable by the 6502. As can be seen from the object code field, no
code is generated for these lines. But unlike comments that are only
there for the programmer's use, EQUs are also used by the assembler.
They are used to generate the symbol table that will be used in the actual
assembly process.

To illustrate this, consider what the assembler does when it sees line
15 of this program. First, it sees the mnemonic JSR and assembles it
into its machine language equivalent value, $20. Then, it sees the label
BELLlA. It looks up the value of BELLlA in its symbol table to find
that it has been given the value of $FBDD. It then places this value
immediately following the $20 generated by the JSR. Looking at the
object code field of that line in your assembly listing, you'll see the
following values: 803 20 DD PB. Note that the two hex bytes of the
address $FBDD are reversed. The 6502 requires two-byte addresses to
be presented low-order byte first.

EQUATE does not really change the program counter because it
generates no object code. In fact, the mnemonic for EQUATE isn't even
in the 6502 instruction set. EQUATE, just like the END mnemonic at

CHAPTER 6 MAKING THE PROGRAM RUN AT DIFFERENT LOCATIONS 31

the end of your assembly, is called an "assembler directive" or
"pseudo-op." It tells the assembler to do something, which is why it
generates no object code. EQU tells the assembler to add a symbol to
the symbol table. END tells the assembler where the end of the source
code is.

Many different assembler directives are available for your assembler.
A few of these will be discussed throughout this book. Look at your as
sembler user's guide to see what kinds of assembler directives are
available.

CHANGING PROGRAM STORAGE

One of the most important assembler directives is the ORIGIN direc
tive. It allows you to specify the starting address of your code. In the as
sembly listings generated so far, the starting address is always $800. This
is because the LISA assembler defaults the program counter to $800 if
the ORIGIN is not specified.

Specify an ORIGIN of $300 for the ERROR SUB routine. This will
allow calling this routine from BASIC if so desired. The required
mnemonic is ORG. However, it cannot be used alone. Once the assem
bler is told that the code is to be run at some address other than $800, it
must be told where to generate and store the code during the assembly
process. It is not practical to tell it to store the code at the same memory
address at which it will run because the assembler itself is a reasonably
large program, and storing object code in an area already occupied by
the assembler should be avoided. Otherwise, an assembly-time crash
might occur.

The LISA assembler has provided an area in memory to store code
and it starts at $800. The mnemonic used to tell the assembler where to
store the object code is OBJ.

Somewhere before the body of the program Gust under the heading,
for instance), insert the following new lines into the program:

ORG $300 ;STARTING ADDRESS OF PROGRAM
OBJ $800 ; LOCATION TO STORE CODE DURING ASSEMBLY

Remember, assembler directives are mnemonics and belong in the

32 ASSEMBLY LANGU AGE PROGRAMMING FOR THE APPLE II

mnemonic field. Add lines of text to the source code and the new listing
should look like the following:

1
2
3
4
5

;*************************
;THIS SUBROUTINE WILL
;PRINT "ERR", BEEP
;THE SPEAKER TWICE,
;THEN PRINT 3 BLANKS

6 ;*************************
7
8
9
10
11

;
PRBLNK
BELLlA
PR ERR

12
13
14
15
16
17 ;
18 ERROR
1~
20
21
22

ORG
OBJ

EQU
EQU
EQU

JSR
JSR
JSR
RTS
END

$300
$8 0 0

$F948
$FBDD
$FF2D

PR ERR
BELLlA
PRBLNK

;PRINT "ERR"
;BEEP SPEAKER
; PRINT 3 BLANKS
;THEN RETURN

Save the source code with the ORIGIN change on disk. Finally, assem
ble the new code and verify the assembly listing. As you can see, the
value for the program counter changed from $800 to $300 on the line
that contained the ORIGIN statement. The newly assembled code is
ready to run at $300.

Before running it, save the object code on disk. Because the object
code is in machine language, it must be saved as a binary file. To do
that, calculate the length of the file. Subtract the value of the program
counter at the first line of the main program (the one with the label
ERROR on it) from its value at the last line of the program (the one
with the R TS instruction on it), then add 1 to that. The answer should
be $A. To save the object code, type

(CTRL-D) BSAVE ERROR SUB.OBJ.A$800.L$A

If you haven't made an assembly listing since you 've set the ORIGIN
at $300, now is the time to do it. The result should look like the follow
ing:

* *END OF PASS l
**END OF PASS 2

080u
CJ!:WO
0800
0800
0800
0800
0800

l ;*************************
2 ;THIS SUBROUT I NE WILL
3 ;PRINT "ERR", BEEP
4 ;THE SPEAKER TWICE,
5 ;THEN PRINT 3 BLANKS
6 ;*************************
7

CHAPTER 6 MAKING THE PROGRAM RUN AT DIFFERENT LOCATIONS 33

0800
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300 202DFF
0303 20DDFB
0306 2048F9
0309 60

***** END OF

8
9 ORG $300
10 OBJ $800
11
12 :
13 PRBLNK EQU $F948
14 BELLlA EQU $FBDD
l 'S PR ERR EQU $FF2D
16
17 :
18 ERROR END PR ERR
19 JSR BEI,I,lA
20 JSR PRBLNK
21 RTS
22 END

ASSEMBLY

* *
*SYMBOL TABLE -- V l.'S *
* *

LABEL. r,oc. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

** ABSOLUTE VARIABLES/ LABELS

PRINT "ERR"
BEEP SPEAKER
PRINT 3 BLANKS
THEN RETURN

PRBLNK F948 BELLlA FBDD PRERR FF2D ERROR 0300

SYMBOL TABLE STARTTNG ADDRESS:6000
SYMBOL TABLE LENGTH:0032

TESTING THE CODE

Pull the assembler disk out of the drive. Turn off the Apple's power.
Turn it back on and boot from an Apple master disk.

Remember, even though the ORIGIN was set to $300 (the program
is to begin executing at $300), the code will be generated and stored
(BSAVEd) at $800. To use the program, just BLOAD it at its origin ,
$300.

Reinsert the disk on which the object file was saved and type

BLOAD ERROR SUB.OBJ.A$300

When the routine has been loaded, enter the monitor with CALL -
151. Before running it, type 300L. A disassembly of the code should
start at $300. The first few lines should look similar to the program,

34 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

except, of course, without any labels or comments, If they do, you're
ready to run; if they don't, you'd better go back to make sure you
actually saved the code and that it assembled correctly.

If everything is in order, type 300G. Now "ERR" will be printed on
the screen, the Apple will beep twice, and three spaces will be printed.

These last few chapters have gone into great detail concerning text
entry and editing. By now you should be familiar with the operation of
the assembler. If not, review the previous chapters, because the
remainder of this book will deal less and less with the operation of the
assembler, and more and more with the assembly language of the 6502.

7
The Concept of Registers

Imagine a BASIC program in which the only arithmetic operations
available were addition and subtraction. Further imagine that, along
with the regular variables used in the program, three "special" variables
were available - A, X, and Y. The reason that these variables are
special is that they must be involved in all move and arithmetic opera
tions. In other words, you could not use a statement of the form

10 M = N

but instead would have to use

10 A= N
20 M =A

You are not allowed, in this hypothetical BASIC language, to move the
contents of one variable directly into another. Instead, you must move
the contents out of the first variable and into the special "A" variable.
The contents can then be moved out of the "A" variable and into the
target variable. As another example, you could not say

40 0 = R

but instead could say

40 A= R
50 0 =A

The rules are the same for arithmetic operations. You could not say

100 R = S + T

35

36 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

but you could use

100 A= S
110A=A+T
120 R =A

You could not use
200 u = v - w

but instead could use

200 A= V
210A=A-W
220 U =A

This arbitrary, hypothetical BASIC illustrates the concept of
"registers." The 6502 microprocessor has three data registers: the
accumulator, the X register, and Y register. All memory-to-memory
move operations must use one of these registers, just as in the
hypothetical BASIC all move operations required one of the "operand"
variables A, X, or Y.

A register is a special place in the microprocessor itself that can hold
an 8-bit value. It's similar to an address in memory except that it is in
the microprocessor chip. The instruction set of the 6502 not only con
tains instructions to load material into these registers from specified
memory locations, but also has certain instructions that allow the con
tents of these registers to be modified in certain ways. With few excep
tions, this is the only method by which the 6502 can perform any
arithmetic or logical operations. The reason for this is that it is much
easier to design a microprocessor that can perform operations on a num
ber contained within one of its own registers than it would be to design
one that could perform work on numbers in memory.

8
Loads, Stores,
And Transfers

Beginning with this chapter, the 6502 instruction set will be discussed in
detail. The following instructions will be examined in this chapter:

• LOA - Loads accumulator from memory. This transfers the contents of a
memory location to the 6502's accumulator register (see Figure 8-1).

• LOX - Loads the X register with the contents of a specified memory loca
tion. Similar to LOA, this operates on the X register.

• LOY - Loads the Y register with the contents of a specified memory loca
tion.

ST A - Stores accumulator in memory. This transfers the contents of the
6502's accumulator register into a specified byte of memory (see Figure
8-2).

• STX - Stores the value in the X register into a specified memory location .
This works like ST A, but operates using the X register (see Figure 8-3).

• STY - Stores the value in the Y register into a specified memory location
(see Figure 8-4) .

• TAX - Transfers the contents of the accumulator to the X register (see
Figure 8-5) .

• TXA - Transfers the contents of the X register to the accumulator (see
Figure 8-6) .

• TAY - Transfers the contents of the accumulator to the Y register (see
Figure 8-7).

• TY A - Transfers the contents of the Y register to the accumulator (see
Figure 8-8).

37

38 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

LDA

STA

STX

STY

_..__.._..__._...__._......__I ~ I Memory

Accumulator

Figure 8-1. Load accumulator from memory

..._..__.._..__.__......__I ~1 _M_e_m_o_ry _ _.
Accumulator

Figure 8-2. Store accumulator in memory

_..__....__.__.__.__._......___,I~ I Memory

X Register

Figure 8-3. Store X register in memory

_..__.._....__.__.__.__.__I ~· 1
__ M_e_m_o_ry _ _.

Y Register

Figure 8-4. Store Y register in memory

CHAPTER 8 LOADS. STORES. AND TRANSFERS 39

TAX

Accumulator X Register

Figure 8-5. Transfer from accumulator to X register

TXA

----~'-'---1~_1 ----------
Accumulator X Register

Figure 8-6. Transfer from X register to accumulator

TAY

----~----'~'----------Accumulator Y Register

Figure 8-7. Transfer from accumulator to Y register

TYA

Accumulator Y Register

Figure 8-8. Transfer from Y register to accumulator

40 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

THE MOVEMENT CONCEPT

To better understand the principles of moving material to implement a
load, store, or transfer, consider the following example. Look at the two
move operations for the accumulator, or A register. LDA will take the
contents of any memory location and transfer them into the 6502's
accumulator register. Its assembly form is

10 LDA $300 ;LOAD ACCUMULATOR FROM $300

or

20 LDA VALUE ; LOAD ACCUMULATOR FROM "VALUE"

assuming, of course, that a label VALUE had been previously defined
with an EQUATE statement.

The value contained in the accumulator can also be stored into any
location in memory. To do this, use the mnemonic STA, as in the
following examples:

30 STA $300 ;STORE ACCUMULATOR IN $300

40 STA VALUE ; STORE ACCUMULATOR IN "VALUE"

In the first case, the instruction will store the contents of the accumula
tor into memory location $300. In the second, it will store the contents
of the accumulator into the memory location previously given the label
VALUE.

It is important to note that 6502 memory move instructions are non
destructive (that is, the original contents of the location or register
moved from are not changed by a move). Consider the following
instruction:

50 STA $300

Not only would the contents of the accumulator be stored in memory
location $300, but the accumulator itself would not be changed. So, if
the contents of the accumulator were $FF before the move, they would
still be $FF after the move.

Try a sample subroutine using two instructions you already know and
one new one. This subroutine, when called from a BASIC program, will
print the single-byte value stored in location 775 (decimal) in hex
adecimal notation. It uses another monitor subroutine, called PRBYTE,
that will output the contents of the accumulator in hex. It will not print a
carriage return afterward, so if one is desired it will have to be done in
BASIC.

CHAPTER 8 LOADS, STORES. AND TRANSFERS 41

ORG $300
OBJ $800

' VALUE EQU $307
PRBYTE EQU $FDDA
;
PRHEX LOA VALUE

JSR PRBYTE
RTS
END

ASSEMBLED PROGRAM:

**END OF PASS 1
**END OF PASS 2

0800 1
0800 2
0800 3
0800 4
0800 5

;*************************
; SUBROUTINE TO PRINT A

'
BYTE IN HEX

;*************************

0300 6 ORG $300 ;ADDRESS TO BEGIN PROG. EXECUTION
0300 7 OBJ $OBJ ;LOC. TO STORE PROG. DURING ASSY
0300 8 ;
0300 9 VALUE EQU $307
0300 10 PR BYTE EQU $FDDA
0300 11
0300 AD0703 12 PR HEX LOA VALUE
0303 20DAFD 13 JSR PRBYTE
0306 60 14 RTS

15 END

***** END OF ASSEMBLY

* SYMBOL TABLE -- V 1.5 *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

ZERO PAGE VARIABLES:

** ABSOLUTE VARIABLES/LABELS

VALUE 0307 PRBYTE FDDA PRHEX 0300

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:00 2A

LOAD ACCUMULATOR WITH VALUE
AND PRINT IT IN HEX
THEN RETURN

To use the routine from BASIC, first BLOAD the program at $300 (768
decimal). Then, in BASIC, use the form

100 POKE 775.A
110 CALL 768

120 PRINT

:REM POKE VALUE TO BE CONVERTED
:REM CALL YOUR ROUTINE (AT $300) TO PRINT VALUE
IN HEX

:REM THEN PRINT CARRIAGE RETURN

42 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

Try entering and assembling this subroutine. It could prove useful in
your own BASIC programs.

The remaining eight instructions operate on the same principles as
LDA and STA. The mnemonic for each instruction indicates the specific
action it performs.

SAMPLE ROUTINE

The following example routine is similar to the one in the previous sec
tion, but this one will print out any two-byte value in hex. Store the two
bytes in locations 781 ($30D) and 782 ($30E) before calling the routine.
Remember to store the low-order byte in 781 and the high-order byte in
782, since that is the order in which the 6502 will look for the address.

1 ;************************ *
2 ;* SUBROUTINE TO OUTPUT *
3 ;* ANY TWO-BYTE QUANTITY *
4 ; * IN HEXADECIMAL *
5 ;*************************
6
7
8 ORG $300
9 OBJ $800

10
11

' 12 VALL EQU $30D
13 VALH EQU $30E
14 PRNTYX EQU $F940
15 CROUT EQU $FD8E
16
17 ;
18 HEXOUT LDX VALL ;LOAD X WITH LOW-ORDER BYTE
19 LDY VALH ;LOAD Y WITH HIGH-ORDER BYTE
20 JSR PRNTYX ;OUTPUT AS HEX
21 JSR CROUT ;THEN DO A CARRIAGE RETURN
22 RTS ;AND RETURN
23 END END

ASSEMBLED ROUTINE:

**END OF PASS 1
**END OF PASS 2

0800
0800
0800
0800
0800
0800
0800
0300
0300

1
2
3
4
5
6
7
8
9

·******* ******** ********** ' ;* SUBROUTINE TO OUTPUT *
;* ANY TWO-BYTE QUANTITY *
;*IN HEXADECIMAL *
;*************************

ORG $ 300
OBJ $800

CHAPTER 8 LOADS, STORES. AND TRANSFERS 43

0300
0300
0300
0300
0300
0300
0300
0300
0300 AEOD03
0303 ACOE03
0306 2040F9
0309 208EFD
030C 60

10
11 ;
12 VALL
13 VALH
14 PRNTYX
15 CROUT
16
17
18
19
20
21
22
23

,
HEXOUT

END
***** END OF ASSEMBLY

EQU
EQU
EQU
EQU

LDX
LDY
JSR
JSR
RTS
END

$30D
$30E
$F940
$FD8E

VALL
VALH
PRNTYX
CROUT

* SYMBOL TABLE -- V 1.5 *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

ZERO PAGE VARIABLES:

** ABSOLUTE VARIABLES/LABELS

;LOAD X WITH LOW-ORDER BYTE
;LOAD Y WITH HIGH-ORDER BYTE
;OUTPUT AS HEX
;THEN DO A CARRIAGE RETURN
;AND RETURN

VALL 030D VALH 030E PRNTYX F940 CROUT FD8E HEXOUT 0300 END 030D

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0042

Here is how to use the program from BASIC. Assume the value to be
printed in hex is in the BASIC variable V. Note that it is necessary to
BLOAD the object program at $300 (decimal 768) before using it from
BASIC.

100 POKE 782, INT (V / 256)

110 REM POKE HIGH BYTE OF VARIABLE V

120 POKE 781, V - INT (,V / 256) * 256

130 REM POKE LOW BYTE OF VARIABLE V

140 CALL 768

150 REM PRINT IN HEX

Once again, this assembly language subroutine uses subroutines that
already exist in the Apple II's F8 monitor ROM. The subroutine labeled
CROUT at $FD8E simply prints a carriage return character ($8D) when
it is called. Another subroutine, PRTYX at $F940, outputs the two-byte
value stored in the X and Y registers in hex.

The example subroutine first loads the X and Y registers from the
two memory locations where the BASIC calling program left the value
to be printed. It then jumps to the subroutine that outputs the value in
hex, and upon return , jumps to the subroutine that RETURNs. This

44 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

shows why it is necessary to be able to load (and store) the X and Y
registers, as well as the accumulator.

9
Simple Arithmetic

Operations
The following instructions will be discussed in this chapter:

• INC - Increments (adds 1 to) the quantity in a specified memory location
(see Figure 9-1) .

• INX - Increments the quantity in the X register (see Figure 9-2) .

• INY - Increments the quantity in the Y register (see Figure 9-3).

• DEC - Decrements (subtracts 1 from) the quantity of a specified memory
location (see Figure 9-4) .

• DEX - Decrements the quantity in the X register (see Figure 9-5).

• DEY - Decrements the quantity in the Y register (see Figure 9-6).

• CLC - Clears the value of the Carry flag, making it 0 (see Figure 9-7).

• SEC - Sets the value of the Carry flag and makes it 1 (see Figure 9-8) .

• ADC - Adds the contents of the accumulator to the value contained in a
specified memory location, then adds the value of the Carry flag to that ,
and leaves the result in the accumulator (see Figure 9-9).

• SBC - Subtracts the contents of a specified memory location from the
value contained in the accumulator, then subtracts 1 from that; adds the
value of the Carry flag to the result, putting the entire calculation back into
the accumulator (see Figure 9-10).

In operation, all decrement instructions are similar, as are all incre
ment instructions. Consequently, only four new instruction types -
increment, decrement, add, and subtract - are being discussed here.

45

46 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

INC

_I _l~l_l~l ___ l_l~l_l~-1 ~,-,~,-1..---1~1~1-
Any Memory Location Same Memory Location

Figure 9-1. Increment memory quantity

INX

_I ~l_l ___ I _l __ ~l~_I _____ I _I ___.__
X Register X Register

Figure 9-2. Increment X register quantity

INY

I ~l...._~I _l_l ____ l~I-_____ l_I ____ _
Y Register Y Register

Figure 9-3. Increment Y register quantity

DEC

11111111~11111111
Any Memory Location Same Memory Location

Figure 9-4. Decrement memory quantity

CHAPTER 9 : SIMPLE A RITHMETIC OPERATIONS 4 7

DEX

l~I .__...._...._ __. (Subtract 1) .__...._...._.....__.___... _ __,..........,
X Register X Register

Figure 9-5. Decrement X register quantity

DEY

l~I
.......__....__._ ___.__ (Subtract 1) ----------

Y REGISTER Y Register

CLC

SEC

Figure 9-6. Decrement Y register quantity

Carry
Flag

Carry
Flag

Figure 9-7. Clear Carry flag

Carry
Flag

Carry
Flag

Figure 9-8. Set Carry Flag

48 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

ADC

+

SBC

I I

- 1

I I
Accumulator

Carry
Flag

+ I I
Memory Location

Accumulator

Figure 9-9. Add accumulator, memory, and Carry flag

I I
Accumulator

Carry
Flag

I I
Memory Location

I I
Accumulator

Figure 9-10. Subtract memory, Carry flag from accumulator

I I

INCREMENTING AND DECREMENTING

Not all operations apply to all registers. Instructions are available to
increment or decrement memory locations, the X register, and the Y
register, but none is available for the accumulator. On the other hand,
both of the arithmetic operations shown (add and subtract) interact with
the accumulator.

The accumulator is a special register that is used for arithmetic and
logical operations. Although it is not given a letter name, it is often

CHAPTER 9 : SIMPLE ARITHMETIC OPERATIONS 49

referred to as the A register. Since designing a microprocessor with
registers that can perform arithmetic and logical operations is an
involved task, the designers of the 6502 opted to have only one
arithmetic register - the accumulator. The other two registers, X and
Y, are usually referred to as the "index registers." Although they can
not be used for arithmetic operations, they work well as incrementing
registers and in loops - the assembly language equivalent of the BASIC
"FOR ... NEXT" function .

Up to now, only instructions that involve either the contents of
memory locations or the contents of registers have been discussed.
There are, however, other operators to be considered when dealing with
microprocessors - flags. Simply stated, a flag is similar to a register in
that it is a part of the microprocessor. However, unlike registers, which
are eight bits long, flags only have one bit. Therefore, they can only con
tain either a 1 or a 0.

The 6502 has seven flags that are used for different purposes. These
are the Carry flag, Zero flag, Interrupt Disable flag, Decimal flag, Break
flag, Overflow flag, and the Sign flag (see Figure 9-11) . All can be set or
cleared by the 6502 as the result of some operation, and they all reside
in a single register known as the "processor status" or "P" register.
Some, such as the Carry flag, can be set or cleared with specific instruc
tions. Two instructions for the Carry flag appear in the list of instruc
tions at the beginning of the chapter, CLC (clear the carry) and SEC (set

\:J \=] \:J \:J
Carry Zero Interrupt Disable Decimal
Flag Flag Flag Flag

\:J \=] \:J
Break Overflow Sign
Flag Flag Flag

Figure 9-11. Flags of the 6502

50 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

the carry). (Note that in computer terms, "clear" usually means to
make something 0, and "set" usually means to make something 1.)

ADDITION

In decimal arithmetic, adding two single-digit numbers is simple, as long
as the result is a single-digit number. However, if the result of adding
two single-digit numbers yields a value that cannot be represented in a
single digit, the simplicity disappears. To understand what takes place
during the addition of two single-digit numbers that yield a two-digit
answer, look at the following example.

First, add 6 and 6. The single-digit answer to the problem is 2.
Assuming that using another digit is not allowed, this would be the final
answer. In traditional math, however, the process of adding the two 6s
together generates a carry. The single-digit answer may be 2, but a 1 is
also generated.

Now add the second column. Since, in this example, the carry is only
in the second column, the effect is to add a 1 and a 0:

(1)

06
+o 6

1 2

Thus, the answer is 12.
Consider adding 29 and 9. First, perform the low-order digit addition.

The result of the addition of a 9 and a 9 is an 8, but a carry is also gener
ated. Next, add the high-order digits with the carry.

(1)

2 9
+o 9

3 8

The result of the addition for the high-order digits in the second column
is 2, plus the carry (1), which equals 3. Note that only a 1 can be carried
because no combination of single-digit values yields a carry greater than
1. Consequently, a carry during the addition of any two digits may be
considered a conditional function, since in effect, the Carry is either set
(equal to 1) or cleared (equal to 0).

CHAPTER 9 SIMPLE ARITHMETIC OPERATIONS 51

Binary Addition

This process ties in with the binary math the 6502 normally works with.
The 6502 is an 8-bit microprocessor, and as such, can deal directly with
any quantity that can be represented in eight bits. This will be any
decimal value from 0 to 255.

Values greater than 255, however, are frequently used with com
puters. The computer interprets numbers more than eight bits long the
same way humans deal with numbers more than one digit long. Humans
add another digit, while the computer adds another byte.

When adding two single-digit numbers with a single-digit sum,
nothing is carried. Likewise, when the 6502 adds two single-byte values,
no carry is generated if the result can be represented in a single byte. On
the other hand, when adding two single-byte values, the result of which
is a value that cannot be represented in one byte, the 6502 will leave the
one-byte value as the answer, and the Carry flag will be set.

BINARY HEX DECIMAL

0001 0001 $11 17

+0001 1111 $1F 31
-

0011 0000 $30 48

CARRY IS CLEARED (0)

Since the result of this single-byte addition is represented in a single
byte, the Carry has been cleared, as in the following example:

BINARY HEX DECIMAL

1100 1111 $CF 207

+ 1111 0000 $FO 240

(1) 1011 1111 $(1)6F 447

CARRY IS SET (1)

In this example, the sum of the addition could not be represented in one
byte, so the one-byte sum was left as the answer and the Carry flag was
set.

These examples show that the Carry flag exists in the 6502 to facili
tate the use of values that are greater than one byte.

52 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

Precision Math

Single-byte math is referred to as "single-precision math" and two-byte
math is usually referred to as "double-precision math." Single- and
double-precision math are generally used in assembly language pro
gramming. If more precision is needed, a different type of representa
tion, called "floating point representation," is generally used.

Consider the following single-byte addition routine:

1 ;---------------------------
2 ,
3 ;-SINGLE PRECISION ADDITION-
4 ,
5
6
7

;---------------------------

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

,
VALl
VAL2
SUM

,
ADD

,
END

ORG
OBJ

EQU
EQU
EQU

CLC
LDA
ADC
STA
RTS

END

~300
$800

~3UB
$30C
$30D

VALl
VAL2
SUM

;FIRST, CLEAR THE CARRY
;LOAD ACCUMULATOR WITH ONE VALUE
; AND ADD THE OTHER ONE TO I T
;THEN STORE THE RESULT
;AND RETURN

Everything in this routine should be straightforward. Notice in partic
ular line 17, the first line of the subroutine. Since the state of the Carry
flag is not apparent when calling the routine, always clear the Carry flag
before performing any additions. Remember, the value of the Carry flag
will be added to the result of any addition.

If, by chance, the Carry was set by something outside of the routine
and was not cleared before performing the addition, the answer would
be incorrect. Always clear the Carry flag before beginning any additions .

After assembling this routine, BLOAD it into the computer (remem
ber to do this at its original address) and enter the monitor to try it. By
placing values into locations $30B and $30C and then calling this routine
(300G from the monitor), the single-byte result of that addition will be
shown by examining location $30D. Remember that if the result of any

CHAPTER 9 SIMPLE ARITHMETIC OPERATIONS 53

addition cannot be represented in eight bits, only the lower eight-bit
portion of that answer will be available.

Single-precision additions generally do not make useful subroutines
because it takes as much or more code to "set up" and call a single-pre
cision addition as would be required to do one every time it was needed.
Multiple-precision additions are another story, however, especially if
they are part of a subroutine library containing other arithmetic func
tions. Consider the following example:

1 ;==============================
2 ;=
3 ;=DOUBLE PRECISION ADDITION =
4 ;= VALl + VAL2 = SUM
5 ;=
6 ;==============================
7
8
9 ORG $300

10 OBJ $800
11
12
13
14
15
16
17
18
l!I
20
21
22
23
24
25
26
27
28
29
30
31

;
VALlL
VALlH
VAL2L
VAL2H
SUML
SUMH

;
DPADD

;
END

EQU $315
EQU $316
EQU $317
EQU $318
EQU $319
EQU $31A

CLC
LDA VALlL
ADC VAL2L
STA SUML
LDA VALlH
ADC VAL2H
STA SUMH
RTS

END

;FIRST, CLEAR CARRY FLAG
;THEN ADD THE TWO LOW
;ORDER BYTES TOGETHER
;AND STORE RESULT IN SUML
;THEN ADD HIGH ORDER BYTES WITH
;CARRY FROM LOW ORDER ADDITION
;STORE RESULT IN SUMH
;THEN RETURN

A double-precision addition is virtually the same as two single-preci
sion additions, but with one important difference. In a double-precision
addition, the Carry is not cleared before the high-order bytes are added
together. The reason for this is the previous low-order byte addition
might have left the Carry flag set, indicating that the result could not be
represented in only one byte. Since the value of the carry is always
included in additions, it would be added to the sum of the high-order
addition.

Before proceeding to subtraction, consider a review of the ADC
instruction. The accumulator is loaded with a value. Then the value of a
specified memory location is added to the value contained in the

54 ASSEMBLY LANGUAGE PROGRAM MING FOR THE APPLE II

accumulator. The value of the Carry flag (either 1 or 0) is added to that,
and the resulting eight-bit sum is left in the accumulator. If the sum can
be represented in a single byte, the Carry flag is cleared. If not, the Carry
flag is set for use by a possible "next-precision" addition.

SUBTRACTION

Assuming negative numbers do not exist, consider subtracting 8 from
17. First, find out if the subtrahend is less than or equal to the number
from which it is being subtracted. If that is the case, subtract and pro
ceed to the next digit. If that is not the case (as in this example) borrow
1 from the next column. This, of course, decrements the next column,
but creates the condition required to do a normal subtraction in the first
column.

17
-8

0 (1)7
-0 8

0 9

The 6502, on the other hand, will perform this subtraction in a different
manner. First, the value of a specified memory location is subtracted
from the contents of the accumulator by a process called two's comple
ment addition. If the subtraction causes a borrow, the Carry flag (in this
case used as a "Borrow flag") is cleared. If no borrow was required, the
Carry flag is set.

Tt is easier to design hardware that will add two values than it is to
design hardware that subtracts, even if you must design hardware to
complement a binary value (that is, to replace all of its ls with Os and all
of its Os with ls) to make it work. These two processes are used by the
6502 to perform two's complement addition or, in effect, a subtraction.

Consider the following example to see how the 6502 performs
subtraction using two's complement addition.

Subtract the following two values:

255 OR $FF OR 1111 1111
- 2 -$02 -uooo 0010

Assume the Carry flag was set prior to this subtraction. The state of
the Carry flag is indicated with parentheses to the left of the values in
the following example.

(1) 255 OR (1) $FF OR (1) 1111 1111
- 2 - $02 -0000 0010

CHAPTER 9 SIMPLE ARITHMETIC OPERATIONS 55

The first step in two's complement addition is to take the comple
ment of the value to be subtracted. In binary, the complement of a value
is formed by inverting the value of each bit in the number. Thus, each
bit that was a 1 is converted to a 0, and vice versa. Now the subtraction
looks like the following:

(1) 255 OR (1) $FF OR (1) 1111 1111
253 $FD 1111 1101

The value of the carry is added to the value to be subtracted, as in the
following:

() 255 OR () $FF OR () 1111 1111
254 $FE 1111 1110

Finally, the two values are added together. As with any addition, if
the sum is too large to be represented in eight bits, the Carry is set, as in
the following:

255 OR $FF OR 1111 1111
+254 +$FE 1111 11 10

(1) 253 (1) $FD (1) 1111 11 01

Remember, before performing a simple subtraction or before the first
(lowest order) step in a multiple-precision subtraction, set the Carry flag
to indicate that no borrow exists.

The references books listed in Appendix B offer more information on
two's complement addition.

SAMPLE ROUTINE

Now consider a single-precision subtraction routine in assembly
language.

**END OF PASS 1
**END OF PASS 2

U8UU l ;@@@@@@@@@@ @@@@@@@@@@@@@@
0800 2 ;@ @
08UU 3 ;@ SINGLE PRECISTON @
0800 4 ;@ SUBTRACTION @
0800 5 ; @ VALl - VAL2 =RESULT @
0800 6 ;@ @
08UU 7 ;@@@@@@@@@@@@@@@@@@@ @@@@@

56 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

0800 8
0800 9
0300 10 ORG $300
03UU 11 OBJ $800
0300 12
030U 13 ;
0300 14 VALl EQU $30B
0300 15 VAL2 EQU $3UC
0300 10 RESULT EQU $30D
0300 11
0300 18 ;
0300 38 19 SPSUB SEC ALWAYS SET CARRY FOR SUBTRACT
0301 ADOB03 20 LOA VALl LOAD ACCUMULATOR WITH FIRST VALUE
U304 EDOC03 21 SBC VAL2 SUBTRACT SECOND VALUE FROM IT
0307 8DOD02 22 STA RESULT THEN STORE "RESULT"
030A 6U 23 RTS RETURN
030B 24
030B 25 ;

26 END END

***** END OF ASSEMBLY

* *
*SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

**ZERO PAGE VARIABLES:

** ABSOLUTE VARIABLES/ LABELS

VALl 03UB VAL2 030C RESULT 030D SPSUB 0300 END 03UB

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:003A

Remember, just as the Carry should be cleared before any addition
operation, the Carry should always be set before a subtraction. This
subtraction routine can be assembled, BSAVed, and BLOADed, and
run from the monitor, just like the single-precision addition routine.

Now consider a double-precision subtraction routine.

1
2
3
4
5
6
7
8
9

10
11
12
13

;#t############t###############
; # #
;#DOUBLE PRECISION SUBTRACT #
;# VALl - VAL2 =ANS #
; # #
;###########*#########*########

,
VALlL

ORG $300
OBJ $800

EQU $314

CHAPTER 9: SIMPLE ARITHMETIC OPERATIONS 57

14 VALlH EQU $315
15 VAL2L EQU $316
16 VAL2H EQU $317
17 ANSL EQU $318
18 ANSH EQU $319
19
20 ;
21 DPSUB SEC ;ALWAYS SET CARRY FOR SUBTRACTION
22 LOA VALlL ;FIRST, SUBTRACT LOW ORDER BYTES
23 SBC VAL2L ;AND STORE LOW
24 STA ANSL ;ORDER ANSWER
25 LOA VALlH ;THEN SUBTRACT HIGH ORDER BYTES
26 SBC VAL2H ;WITH BORROW FROM LOW ORDER
27 STA ANSH ;SUBTRACT. STORE RESULT
28 RTS
29
30 ;
31 END END

Again, similarities exist between the double-precision addition
subroutine and this double-precision subtraction subroutine. Notice
that the Carry is set only before the first , low-order byte subtraction.
That in turn will either clear or set the Carry, depending on whether a
borrow was generated or not. The status of the Carry flag then will be
taken into account in the high-order subtraction process.

10
Different Addressing

Modes
Instructions discussed in this chapter include LDA, LDX, LDY, ST A,
STX, STY, INC, DEC, ADC, and SBC. All these instructions should be
familiar by now. However, in this chapter each will be used with some
different "addressing modes."

IMPLIED MODE

Thus far , all instructions discussed use either the IMPLIED addressing
mode or the ABSOLUTE addressing mode. Consider the IMPLIED
addressing mode first. Instructions such as INX, DEY, RTS, CLC,
TXA, and so forth, use the IMPLIED addressing mode. All 6502
instructions do something to something. Generally speaking, the
instructions do something to a register, a flag, or a memory location.
These instructions use the IMPLIED addressing mode. For example,

• INX - Increment the X register; the object of the instruction is implied by
the instruction .

• CLC - Clear the Carry flag; again , the object of the instruction is implied
by the instruction.

59

60 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

• RTS - Return from subroutine; once again, the target is implied.

All simple (no operand) 6502 instructions use the IMPLIED address
ing mode.

ABSOLUTE MODE

The other mode used thus far is the ABSOLUTE addressing mode.
Instructions like LDA, STY, ADC, and so forth, can all use the
ABSOLUTE addressing mode. These are all "three-byte" instructions,
where the first byte is, of course, the instruction's op-code and the sec
ond and third bytes contain an absolute address. Consider the following
examples:

• LDA $FOFO - Load the accumulator with the value contained in the
address $FOFO.

• ADC $300 - Add (with carry) the contents of memory location $300 to
the accumulator.

The different number of bytes required by an instruction can be
determined by looking in the machine code field of the assembly list
ings. As mentioned before, the two ABSOLUTE address bytes are
reversed, with the low-order byte always preceding the high-order byte.
This is how the 6502 requires all addresses to be stored. So, a typical as
sembly line might look like the following: 300: 8COA03 1 STY $30A.
All instructions that load, store, or perform some arithmetic or logical
operation may use the ABSOLUTE addressing mode.

IMMEDIATE MODE

It is often useful to load a· register with a constant or to add a register
with a constant. This is performed using the IMMEDIATE addressing
mode. Just as in BASIC, statements such as these might be used:

10 A= 45
20 B = 12
30 A = B + 14
40 A = A - 22

CHAPTER 10 DIFFERENT ADDRESSING MODES 61

The same assignments of constants can be done in assembly
language. Consider the following examples:

1 LDA #$20
2 LDY #OVER
3 LDX / OVER
4 ADC #$0C

The '-' #" is used to indicate the Immediate addressing mode in 6502
assembly language. This example would be interpreted as follows:

• LOA #$20 - Load the accumulator with the quantity $20,

• LOY #OVER - Load the Y register with the value of the label OVER
from the assembler's symbol table. (For example, if OVER was defined as
$3E, this instruction would load the number $3E into the Y register. If
OVER was defined as $C010, only the low-order byte ($10) would be
loaded into the Y register.)

• LOX /OVER - The "/" is commonly used to indicate the immediate
value of the high-order byte of an address or label. Thus, if the value of
OVER was $C010, this line would load the X register with $CO.

• ADC #$0C - Adds the contents of the accumulator with carry, to the
constant $0C and leaves the result in the accumulator.

Thus, instructions using the ABSOLUTE addressing mode affect the
contents of the byte in memory specified by the operand. IMMEDIATE
mode instructions consider the operand to be a constant. Note that only
load instructions can use the IMMEDIATE addressing mode. In BASIC
the following command is prohibited: 100 1 = A. In assembly l~nguage,
the following is prohibited: 100 STA #01. In the IMMEDIATE mode,
the number 1 (above) is actually the value 1, not a memory location.

The following program performs the function of clearing
ONERR ... GOTO status in Applesoft and is identical to POKE 216,0 in
Applesoft:

1 ;***CLEARS ONERR ... GOTO STATUS
2
3 ORG $300
4 OBJ $800
5 ;
6 ERRFLG EPZ ~DB
7 ;
8 CLRERR LOA #$0 STORE A ZERO IN
9 STA ERRFLG THE ONERR STATUS FLAG

10 RTS AND RETURN
11 END

ASSEMBLED PROGRAM:

62 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

**END OF PASS 1
**END OF PASS 2

08()0 l ;*** CLEARS ONERR ... GOTO STATUS
0800 2
030U 3 ORG $300
0300 4 OBJ $800
0300 5 ' 0300 6 ERRFLG EPZ $DB
0300 7 ;
0300 A9lJu 8 CLRERR LDA #$0
0302 85D8 9 STA ERRFLG
0304 60 10 RTS

11 END

***** END OF ASSEMBLY

* *
*SYMBOL TABLE -- V 1.5 *

* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

ERRFLG OOD8

** ABSOLUTE VARIABLES/ LABELS

CLRERR 0300

SYMBOL TABLE STARTING ADDRESS:6UOO
SYMBOL TABLE LENGTH:0022

STORE A ZERO IN
THE ONERR STATUS
AND RETURN

FLAG

While assembling this routine, notice the format ofline 8, which uses an
IMMEDIATE addressing mode instruction. In the machine code field,
notice first the op-code for LDA IMMEDIATE ($A9) followed by the
immediate value to be loaded, $00.

Look down a line and notice the instruction ST A ERRFLG appears to
be an ABSOLUTE addressing mode instruction. However, only two
bytes are used to represent the line, not the usual three.

ZERO PAGE ADDRESSING

Earlier, Page 0 of memory ($0-$FF) was noted as having special signifi
cance to the 6502. One specialty of Page 0 is that is has its own address
ing mode called ZERO PAGE addressing mode. ZERO PAGE address
ing is very similar to ABSOLUTE addressing. However, since it only
takes one byte of memory to specify the ABSOLUTE address of a
memory location in ZERO PAGE, only one byte is used. Code can be

CHAPTER 10 DIFFERENT ADDRESSING M ODES 63

written exactly as if it were in the ABSOLUTE mode and the assembler
itself will determine when to use ZERO PAGE mode. Consider the
following lines:

1 ZPLOC EPZ $4F ZERO PAGE ADDRESS
2 LOC EQU $1000 ABSOLUTE ADDRESS
3
4 LDA $00 ZERO PAGE ADDRESSING
5 LDX LOC ABSOLUTE ADDRESSING
6 STY ZPLOC ZERO -·AGE ADDRESS Hi. ;
7 ADC $2D ZERO PAGE ADDRESSING

Even though lines 4 through 7 look as though they should generate
equal amounts of object code when assembled, that is not the case. The
lines with Load instructions with ZERO PAGE operands will generate
only two bytes of code - one for the instruction and one for the ZERO
PAGE address. The other will, of course, generate three bytes - one
for the instruction and two for the ABSOLUTE address specified in the
operand. Remember, the assembler takes care of all of this.

In actual applications, the ZERO PAGE adl'ressing mode is
extremely useful. It allows performing the same funct. ')n in a third less
code than used by ABSOLUTE mode instructions. As an added bonus,
ZERO PAGE instructions execute faster than their ABSOLUTE mode
counterparts.

The purpose of this procedure is to define locations that will be
referenced repeatedly throughout programs as ZERO PAGE locations.
This allows saving a byte (and a few microseconds) every time a ZFRO
PAGE instruction is used where an ABSOLUTE one might have been.

As an example of this, rewrite the double-precision addition routine
from the last chapter, using ZERO PAGE variables instead. The original
routine took 20 bytes.

1 ;==============================
2 ;=
3 ;=DOUBLE PRECISION ADDITION =
4 ;= VALl + VAL2 = SUM
5
6
7
8
9

10
11
12
13
14
15
16
17
18
1 9
2 0

·= ' ;==============================

ORG $300
OBJ $800

;
VALlL EPZ $18
VALlH EPZ $19
VAL2L EPZ $1A
VAL2H EPZ $1B
SUML EPZ $1C
SUMH EPZ $1D

64 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

21 DPADD
22
23
24
25
26
27
28
29 END

CLC
LDA VALlL
ADC VAL2L
STA SUML
LDA VALlH
ADC VAL2H
STA SUMH
RTS
END

;CLEAR CARRY FOR ADD
;ADD LOW ORDER BYTES

;AND STORE IN LOW SUM
;THEN ADD HIGH ORDER BYTES

;AND STORE IN HIGH ORDER SUM
;THEN RETURN

When entering and assembling this version, note only 14 bytes are
required to do the same job.

Reservations on Use of ZERO PAGE

ZERO PAGE addressing is so advantageous in the 6502 that its exten
sive use makes code written for the 6502 the fastest of any of the 1 MHz
microprocessors. Of course, Applesoft BASIC, the Apple monitor, and
DOS all use ZERO PAGE heavily because of this. Since, in almost all
cases, assembly language programs will be called from BASIC or DOS
or both, it is important not to "step on" the important ZERO PAGE
locations that Applesoft, the Monitor, and DOS reserve for their own
uses. A map of the reserved ZERO PAGE locations appears in the new
Apple II reference manual.

To be safe, limit ZERO PAGE use to the locations from $18 to $1F,
as these don't appear ever to be used. Of course, when calling a monitor
subroutine or something which requires setting up a ZERO PAGE loca
tion before entering it, that is entirely different. Problems only arise
when you set a location to a certain value and another routine changes
that location.

The 6502 has numerous other addressing modes. Others will be dis
cussed later on in the book.

11
Branching and Looping

Instructions to be discussed in this chapter include the following:
• BCC - Branch if Carry flag is cleared. When this instruction is executed,

program execution will continue at the address specified if the Carry flag is
cleared; if the Carry is set, execution will continue with the next instruc
tion.

• BCS - Branch if Carry flag is set. Branches to specified address only if
Carry flag is set; if the Carry is cleared , execution will continue at the next
instruction .

• BEQ - Branch on result equal to zero. If the result of the previous opera
tion was zero, this instruction will branch to the specified address. If the
result is non-zero, execution will continue with the next instruction.

• BNE - Branch on result not equal to zero. This instruction branches only
if the result of the previous instruction is not equal to zero.

• CMP - Compare the specified memory location's contents with the con
tents of the accumulator. In effect, this instruction does a subtraction
(accumulator - memory), but does not affect the contents of either the
accumulator or the memory location.

• CPX - The same as CMP, but compares the value of a specified memory
location with the X register instead of the accumulator.

• CPY - The same as CMP and CPX, but uses the Y register.

• JMP - Jump to new location . Similar to a GOTO instruction in BASIC,

65

66 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

this instruction jumps to the specified memory location and resumes pro
gram execution there.

In BASIC, program conditional branches can be performed using the
IF .. . THEN statement, as in the following:

10 IF R = 0 THEN GOTO 40
20 IF R > 0 THEN GOTO 60

Similar operations can be performed in assembly language with a
series of BRANCH instructions.

LOOP operations are easily performed in BASIC. The most
straightforward way to accomplish this is with FOR ... NEXT instruc
tions, as in the following:

30 FOR N = 1 TO 40
40 PRINT " -";
50 NEXT N

No assembly language equivalent exists for the FOR ... NEXT loop in
BASIC. However, other BASIC instructions can perform the same
operation that a FOR ... NEXT loop does in BASIC. The following sec
tion of code will perform exactly the same as the FOR ... NEXT loop pre
viously mentioned:

60 N = 1
70 PRINT "-";
80 N = N + 1
90 IF N < 41 THEN GOTO 70

Even though no FOR ... NEXT equivalent exists in assembly
language, other instructions can be used to create assembly language
code similar to the BASIC code previously mentioned.

The key instruction type used to perform both conditional branches
and loops in assembly language is called the Conditional Branch instruc
tion. Assembly language for the 6502 has a number of branch instruc
tions including BCC, BCS, BEQ, and BNE. Since the Carry flag has been
discussed already, the operations of the Branch on Carry clear and
Branch on Carry set instructions (BCC, BCS) should be apparent. To
understand the Branch on result equal to zero (BEQ) and the Branch on
result not equal to zero (BNE) instructions, the Zero flag must be dis
cussed.

CHAPTER 11 · BRANCHING AND LOOPING 67

THE ZERO FLAG

As mentioned in earlier chapters, the 6502 has six other flags in addition
to the Carry flag. One of them is the Zero flag. As previously discussed,
the microprocessor itself will set or clear the Carry flag as a result of
additions and subtractions. Other instructions will also affect the Carry
flag and can be found by checking the t~ble in Appendix F.

All 6502 instructions that change the contents of either a memory
location or register will either set or clear the Zero flag, depending on
whether the result of that operation was a zero. This can be useful
because it means that if the result of an addition, subtraction, incre
ment, or decrement is equal to zero, the Zero flag will be set. If not, it
will be cleared.

BRANCHES

The 6502 instruction set contains a number of conditional branch
instructions. All of them operate on the status of a flag. For example,
when a BEQ is executed, the 6502 will examine the Zero flag. If it is set,
indicating that the result of the last operation was zero, the branch will
occur. If not, the next instruction will be executed. The following sec
tion of code illustrates this:

1 LOY #$2 ;LOAD Y WITH 2
2 DEY ;NOW IT EQUALS 1
3 BEQ RETURN ;IT'S NOT ZERO SO DO NE XT LINE
4 DEY ;NOW I T EQUALS 0
5 BEQ RETURN ;SO BRANCH TO RETURN
6 LDY #$00 ;THIS LINE WON'T GET EXECUTED
7 RETURN RTS

As mentioned earlier, branch instructions can be used to perform
loops. When used with decrement instructions, branches can perform
negative loops. Consider the following BASIC code:

10 y = 40
20 PRINT"-";
30 y = y - 1
40 IF Y > 0 THEN GOTO 20
50 PRINT
60 RETURN

68 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

This subroutine will print a border of minus signs across the screen.
Now, do exactly the same thing in assembly language, as in the follow
ing:

1 ;=================================
2 ;=
3 ;= SUBROUTINE TO PRINT A BORDER
4 ;= OF MINUS SIGNS ACROSS
5 ;=THE APPLE II'S SCREEN
6 ; =
7 ;=================================
8
9

10
11
12
13 ;
14 CRDO
15 OUTDO
16
17 ;
18 BORDER ;DO LOOP $28 (40) TIMES
19 BDRl ;LOAD A WITH ASCII VALUE OF "-"
20 ;AND PRINT IT
21 ;THEN, DECREMENT Y ONCE
22 ;IF IT'S NOT ZERO YET, LOOP
23 ;IF IT IS, DO A CARRIAGE RETURN
24 ;AND THEN RETURN
25
26 ;
27 END

ASSEMBLED PROGRAM:

**END OF PASS 1
**END OF PASS 2

0800 1 ;=================================
0800 2 ;=
0800 3 ;= SUBROUTINE TO PRINT A BORDER
0800 4 ;= OF MINUS SIGNS ACROSS
0800 5 ;= THE APPLE II'S SCREEN
0800 6 ; =
0800 7 ;============== ===== == ============
0800 8
0800 9
0300 10 ORG $300
0300 11 OBJ $800
0300 12
0300 13
0300 14 CRDO EQU $DAFB
0300 15 OUTDO EQU $DB5C
0300 16
0300 17
0300 A028 18 BORDER LDY #$28 ;DO LOOP $28 (40) TIMES
0302 A92D 19 BDRl LDA #$2D ;LOAD A WITH ASCII VALUE OF .. _ ..
0304 205CDB 20 JSR OUTDO ;AND PRINT IT
0307 88 21 DEY ;THEN, DECREMENT y ONCE
0308 DOF8 22 BNE BDRl ;IF IT'S NOT ZERO YET, LOOP
030A 20FBDA 23 JSR CRDO ;IF I T IS, DO A CARRIAGE RETURN
030D 60 24 RTS ;AND THEN RETURN
030E 25
0 30E 26 ;

27 END END

CHAPTER 11 . BRANCHING AND LOOPING 69

***** END OF ASSEMBLY

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

** ABSOLUTE VARIABLES/LABELS

CRDO DAFB OUTDO DB5C BORDER 0300 BDRl 0302 END 030E

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:003A

Enter this routine, assemble it, and print an assembly listing. Two
things are worth noting in this listing. The first is a matter of form or
programming style, and the second is the assembly of the branch
instruction on line 22.

Labeling

In assembly language, the entry point of a subroutine should have a
label that describes the function of the subroutine. In the previous
subroutine, the entry point is labeled BORDER since the function of the
routine is to print a border of minus signs. Also, note that the routine
calls a subroutine labeled OUTDO. This is an Applesoft internal
subroutine that prints or outputs the character found in the accumulator
when it's called. Its label stands for "output do."

Notice that this subroutine has two labels. The second label is used
only as a target for the branch instruction so that the routine will loop
the required number of times. This internal or local label is called
BDRl. If this routine had two more local labels, they would be labeled
BDR2 and BDR3, respectively. This local labeling format is another
useful tool in making assembly language programs easy to understand.
Labeling entry points to describe the function of a subroutine helps
define what that subroutine does. By logically labeling all local labels
within a subroutine, it is easier to understand the code involved in that
routine. For examples of this, look at the assembly listings of the moni
tor ROM found in the Apple II reference manual.

70 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

Relative Addressing

Look at line 22 of the assembly listing, particularly the machine code
field.

0308 DOF8 22 BNE BDR1

Normally, three bytes of machine code are generated for this instruc
tion - one for the instruction's op-code, and two more for the absolute
address to branch to. Instead only two can be found.

Conditional branches in the 6502 instruction set are assembled into
two bytes. The first is the instruction op-code. The second byte tells the
microprocessor the "offset" from the current code address in memory
to the target of the branch. The eighth (high-order) bit of the offset byte
tells the microprocessor which direction to branch.

If the high-order bit is set (that is, the offset value is some number
greater than $7F), the branch instruction will branch backward in
memory. If it is cleared, it will branch forward. The offset is calculated
from the first byte of the instruction immediately following the branch
instruction itself. This type of addressing is called "relative addressing"
because the target address is some address relative to the present loca
tion, plus the specified offset.

As the examples show, to remember these concepts in assembly
language, use a line of the following form and allow the assembler to
figure out the offset.

MNEMONIC OPERAND

CONDITIONAL BRANCH ADDRESS OR LABEL

There is, however, one thing you will have to watch out for. Since the
offset is only one byte long, you can only branch to a location that's less
than 256 bytes away from the location of the branch instruction. What
this means is that you can branch 127 bytes forward from the instruction
following a branch, or 128 bytes backward from that point. Since most
6502 instructions are between two and three bytes long, this means that
you can usually branch to a label about 50 lines away.

If you attempt to assemble a program which contains a branch that is
farther away than allowed, an assembly time "branch out of range
error" will occur. If this occurs, the code will have to be modified so the
long branch doesn't happen. This is usually done by using the branch
instruction's complement and an ABSOLUTE jump (JMP) instruction.
For example,

CHAPTER 11 : BRANCHING AND LOOPING 71

10 RT2 LDY COUNT

11 BEQ RT15

12 STY VALUE

100 RT15 JSR SUB

101 LDA i$1

Assuming that the address of the instruction on line 12 (the instruc
tion following the branch) is greater than 127 bytes away from the
address of the label RT15, an attempt to assemble this code will result in
a branch out ofrange error. Modifying the code will solve this, as in the
following:

10 RT2 LDY COUNT

11 BNE RT3

12 JMP RT15

13 RT3 STY VALUE

100 RT15 JSR SUB

LDA i$1

The complement instruction of BEQ (BNE, for branch if not equal to
zero) is used to branch around the JMP instruction to the continuation
of the code. This is a short branch and will be legal. Then use a JMP
instruction to the desired location, since jump instructions use absolute
addressing and therefore are not restricted to a 255-byte range.

The following are some BASIC examples of the same structure:

100 Y = CT

110 IF Y = 0 THEN GOTO 1000

120 VL = Y

1000 GOSUB 2000

1010 A = 1

72 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

Logically, this code performs the same function:

100 Y = CT

110 IF Y <> 0 THEN GOTO 130

120 GOTO 1000

130 VL = Y

1000 GOSUB 2000

1010 A = 1

Of course, in BASIC there would be no need for the second format,
because the IF ... THEN ... GOTO can branch to any line in a BASIC pro
gram.

COMPARES

Compare instructions compare two values - one in a register and one
in memory. They behave just like a subtract instruction, except that
they don't modify either the register or the memory location involved.
Instead, they set or clear certain flags as a result of the subtraction. A
typical compare statement might look like this:

1 CMP VALUE ;COMPARE THE CONTENTS OF
;ACCUMULATOR WITH THE
; CONTENTS OF THE LOCATION
;"VALUE", AND SET FLAGS

When this instruction is executed, the Carry flag is set for the
subtract. The value in the specified memory location is subtracted from
the value in the accumulator. As a result of the subtract, both the Carry
and the Zero flags are affected. If the result is zero, then the Zero flag is
set. If it 's not, it's cleared. If the value in the accumulator is less than
that in the memory location, a borrow will be required, so the Carry flag
will be cleared. If it's not, the Carry flag is set. The result of the subtrac
tion will be lost after the operation and will not be stored in the
accumulator. Therefore, the contents of the accumulator will not be
affected by the compare.

Remember that in both 6502 compare instructions and subtract
instructions, the form of the operation is

ACCUMULATOR - MEMORY

CHAPTER 11 ·BRANCHING AND LOOPING 73

Consider the following results of a compare instruction in a table:

• IF A = M THEN ZERO FLAG SET
• IF A < > M THEN ZERO FLAG CLEARED
• IF A < M THEN CARRY FLAG CLEARED
• IF A = > M THEN CARRY FLAG SET

There are three compare instructions (one for each register), and
they all behave exactly the same. The only difference is the registers that
are being compared.

• CMP =A - M
• CPX = X - M
• CPY = Y - M

Print Program

Consider the operation of the compare instruction in another real pro
gram. This one will print a specified ASCII character up to 255 times. It
can be used to print different character borders, feed paper to a printer,
or force scrolling by printing repeated carriage returns. To use it, put the
ASCII value of the character you want repeated in location 24 ($18). Put
the number of times you want the character repeated into location 25
($19). Then, call the routine.

l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2 7
28

·******************************** I

;* *
;* THIS SUBROUTINE WILL OUTPUT *
;* ANY ASCII CHARACTER UP TO *
;* 2 55 TIMES. *
i * *
;********************************

ORG $300
OBJ $800

;
CHAR EPZ $18
NUM EPZ $19
OUTDO EQU $DB5C

;
REPEAT LDY #$0 ;INITIALIZE COUNT IN Y
REPl INY ;INCREMENT COUNT IN Y

LDA CHAR ;LOAD THE ACCUMULATOR WITH
JSR OUTDO ;CHARACTER AND OUTPUT IT
CPY NUM ;ARE WE DONE OUTPUTTING?

THE

BNE RE Pl ;IF NOT, CONTINUE OUTPUTTING
RTS ;ELSE, RETURN

;
END END

7 4 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

ASSEMBLED PROGRAM:

**END OF PASS 1
**END OF PASS 2

0800 1 · ******************************** I

0800 2 . * * ,
0800 3 . * THIS SUBROUTINE WILL OUTPUT * I

0800 4 . * ANY ASCII CHARACTER UP TO * I

0800 5 ; * 255 TIMES. *
0800 6 . *

I *
0800 7 ;********************************
0800 8
0800 9
0300 10 ORG $300
0300 11 OBJ $800
0300 12
0300 13
0300 14 CHAR EPZ $18
0300 15 NUM EPZ $19
0300 16 OUTDO EQU $DB5C
0300 17
0300 18 ; ;INITIALIZE COUNT IN Y
0300 AOOO 19 REPEAT LDY #$0 ;INCREMENT COUNT IN Y
030 2 ca 20 REPl INY ;LOAD THE ACCUMULATOR WITH THE
03 0 3 A518 21 LDA CHAR ;CHARACTER AND OUTPUT IT
0305 205CDB 22 JSR OUTDO ;ARE WE DONE OUTPUTTING?
0308 C419 23 CPY NUM ;IF NOT, CONTINUE OUTPUTTING
030A DOF6 24 BNE REPl
030C 60 25 RTS
030D 26
030D 27

28 END END

****** END OF ASS EMBLY

* *
* SYMBOL TABLE -- V 1.5 *

* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

CHAR
'

0018 NUM 0019

** ABSOLUTE VARIABLES/ LABELS

;ELSE,

OUTDO DB5C REPEAT 0300 REPl 0302 END

SYMBOL TABLE STARTING ADDRESS :6000
SYMBOL TABLE LENGTH:0042

RETURN

030D

Each time this routine outputs the specified character, it checks to see
if it has been output the specified number of times. If it hasn't, the
branch in line 24 directs execution back, and the count is incremented.
Then, the whole operation begins again.

The following is an example of how to use this routine from BASIC.
It will print a border of 40 minus signs across the screen.

CHAPTER 11 : BRANCHING AND LOOPING 75

100 REM SUBROUTINE TO PRINT A BORDER OF -"S
110 POKE 24, ASC (" - ")
120 POKE 25, 40
130 CALL 768
140 RETURN

Clearing Graphics

Another sample subroutine will clear the LORES graphics screen to any
color, and erase thP oottom foar lines of text. Normally, if a GR from
BASIC is used, e.e screen is cleared to black, and the bottom four lines
are erased. This routine performs similar functions, but allows picking
the color to which the screen is cleared. A couple of subroutines form
the Monitor ROM again. They are

l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

• SETGR $FB40 - Sets the Apple to the LORES graphics mode with four
lines of text. Clears the screen to black. Same as BASIC command GR.

• VLINE $F828 - Similar to BASIC instruction of same name. Plots a
LORES graphics line in the current color from A through value in $20
at Y.

• SETCOL $F864 - Sets the LORES color to the number found in A.
Similar to the BASIC instruction COLOR=.

·****************************** I

;* *
;* CLEARS LORES GRAPHICS *
;* SCREEN TO SPECIFIED COLOR *
. * I *
·****************************** ,

ORG $300
OBJ $800

;
CLRCOL EPZ $18
V2 EPZ $20
VLINE EQU $F828
SETCOL EQU $F864
SETGR EQU $FB40

;
COLOR JSR SETGR SET LORES GRAPHICS MODE

LOA CLRCOL THEN SET COLOR TO
JSR SETCOL COLOR SPECIFIED
LOA #$27 NOW SET LENGTH OF VLINE
STA V2
LOY #$0 INITIALIZE COUNT IN Y

COLl LOA #$0 SET TOP-OF-LINE POSITION
JSR VLINE AND DRAW ONE LINE AT CURRENT
INY Y COLUMN. INCREMENT Y.
CPY #$28 SCREEN DONE?
BNE COLl NO, DO NEXT COLUMN

76 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

31 RTS ;YES, RETURN
32
33 ;
34 END END

ASSEMBLED PROGRAM:

**END OF PASS l
**END OF PASS 2

0800 l ·****************************** I

0800 2 . *
I *

0800 3 ;* CLEARS LORES GRAPHICS *
0800 4 ;* SCREEN TO SPECIFIED COLOR *
0800 5 ; * *
0800 6 ·****************************** I

0800 7
0800 8
0300 9 ORG $300
0300 10 OBJ $800
0300 11
0300 12
0300 13 CLRCOL EPZ $18
0300 14 V2 EPZ $2D
0300 15 VLINE EQU $F828
0300 16 SETCOL EQU $F864
0300 17 SETGR EQU $FB40
0300 18
0300 19 ,
0300 2020FB 20 COLOR JSR SETGR ;SET LORES GRAPHICS MODE
0303 A518 21 LDA CLRCOL ; THEN SET COLOR TO
0305 2064F8 22 JSR SETCOL ;COLOR SPECIFIED
0308 A927 23 LDA #$27 ;NOW SET LENGTH OF VLINE
030A 852D 24 STA V2
030C AOOO 25 LDY #$0 ;INITIALIZE COUNT IN Y
030E A900 26 COLl LDA #$0 ;SET TOP-OF-LINE POSITION
0310 2028F8 27 JSR VLINE ;AND DRAW ONE LINE AT CURRENT
0313 ca 28 INY ;Y COLUMN. INCREMENT Y.
0314 C028 29 CPY #$28 ;SCREEN DONE?
0316 DOF6 30 BNE COLl ;NO, DO NEXT COLUMN
0318 60 31 RTS ;YES, RETURN
0319 32
0319 33 ;

34 END END

****** END OF ASSEMBLY

* *
*SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

CLRCOL 0018 V2 00 2D

** ABSOLUTE VARIABLES/ LABELS

CHAPTER 11 : BRANCHING AND LOOPING 77

This program draws a full deflection VLINE at each column on the
screen. To use it from BASIC, POKE into location 24 ($18) the number
of the color the screen is to clear to, and call the routine at 768 ($300).

The BASIC equivalent for this is the following:

100 REM SUBROUTINE TO CLEAR LORES SCREEN TO ANY COLOR
110 GR
120 COLOR= C
130 FOR Y = 0 TO 39
140 VLINE 0, 39 AT Y
150 NEXT Y
160 RETURN

They both work the same, of course, only the assembly language ver
sion does it much faster.

SUMMARY

Compare instructions perform a single-precision subtraction, but they
don't affect the register subtracted from. They set the appropriate flags,
relative to the result of the subtraction. Branch instructions will branch
program execution to a new location on a condition, the condition
always being the state of a certain flag .

All branch instructions use relative addressing, which results in the
instruction only requiring two bytes - one op-code, one offset byte.
This normally restricts branches to locations less than 50 program lines
away from the branch instruction .

12
Indexed Addressing

Instructions and assembler directives introduced in this chapter include
the following:

• CMP - Compare the value in the accumulator with the value in a
specified memory location (see Figure 12-1).

• CPX - Compare the value in the X register with the value in a specified
memory location (see Figure 12-2).

• ASC - ASCII string. The assembly language equivalent of a string DAT A
statement in BASIC, this allows assembly language storage of a specified
ASCII string in memory.

As discussed in an earlier chapter, the X and Y registers are generally
referred to as index registers because they are used in the INDEXED

CMP

________ I = o (?)

Accumulator Memory Location

Figure 12-1. Compare

79

8Q ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

CPX

X Register Memory Location

Figure 12-2. Compare X register with memory

ADDRESSING mode. This addressing mode, which can be used with
several of the instructions already discussed, is very useful for perform
ing sequential retrieval of data and run-time specification of values.
Consider the following example:

LOA COUNT

When this instruction is executed, the accumulator will be loaded with
the value stored in the memory location that has the label COUNT. In
the INDEXED addressing mode, however, data can be specified to
come from the address of the label plus the positive offset found in one
of the index registers. Consider the same instruction, this time in the
INDEXED BY X addressing mode instead of the ABSOLUTE mode.

LOA COUNT.X

This instruction reads, "Load the accumulator with the value found
at the address COUNT plus the value in the X register" (see Figure 12-
3) . Thus, the address from which the data will be loaded will depend on
the value in the X register at the time this instruction is executed. If the
X register contains a 0 when the instruction is executed, then the
instruction will load the accumulator with data from the address

Address of "COUNT"

+

Value in X Register

Effective Address for Load

Address of the actual
location of data to be loaded

into the accumulator

Figure 12-3. Load accumulator plus X register

CHAPTER 12 INDEXED ADDRESSING 81

COUNT. If, however, the X register contains the value $FF, the
accumulator will be loaded with the value found in location
COUNT+$FF. The following example shows this operation:

l LOA $1000 ;LOADS FROM ADDRESS $1000
2 LOY #$50
3 LOA $1000,Y ;LOADS FROM ADDRESS $1050
4 LOY #$FO
5 LOA $1000,Y ;LOADS FROM ADDRESS $10FO
6 LOX #$2E
7 LOA LABEL,X ;LOADS FROM ADDRESS LABEL+$2E

To use the INDEXED addressing mode, enter code using the format
shown. In the operand field the address or label should appear, followed
by a comma, followed by the letter of the index register to be used. To
find out if the instruction desired may be used with INDEXED address
ing, see the 6502 instruction set table in Appendix F. Don't put any
spaces in the operand field, since most assemblers assume this means
the ABSOLUTE mode is being requested.

THE ASC DIRECTIVE

Basically, two types of things can be found in any assembly listing: actual
6502 instructions that will be assembled into machine code, and assem
bler directives that are used only by the assembler itself. One of these
assembler directives allows putting ASCII string data directly into
memory, and is very similar to the DATA statement in BASIC.

To include a string "HELLO" in a program, for example, use state
ment of the form

1 HELLO$ ASC " HELLO"

During assembly, the assembler would put the ASCII value for each
of the characters in the string into sequential memory locations. Since
these bytes cannot be executed by the 6502, it 's important never to let
the program try to execute them.

This is the key difference between assembly language data statements
and BASIC's DAT A statement. In BASIC, the program will "skip
over" all DATA statements at execution time. In assembly language,
the programmer is responsible for making sure that the data statements
will not be executed. For this reason, they are usually gathered together,
either at the beginning (before the entry location) or at the end (after
the R TS) of the subroutine that will use them.

The following sample program makes use of the ASCII string data as-

82 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

sembler directive, as well as INDEXED addressing. It is used to print
the word "--ERROR--", but could be used to print any phrase, as long
as it is less than 255 characters long. To do so, insert the desired string
into the operand field of the ASC directive, then make the CPX instruc
tion's operand the immediate number of characters in your string.

l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

21
22
23
24
25
26

ASSEMBLED LISTING:

**END OF PASS l
**END OF PASS 2

0800 l
0800 2
0800 3
0800 4
0800 5
0800 6
0800 7
0800 8
0300 9
0300 10
0300 11
0300 12
0300 13
0300 14
0300 15
0300 A200 16
0302 BDOE03 17
0305 205CDB 18
0308 E8 19
0309 E009 20
030B DOF5 21
0 300 60 22

;*****************************
; * *
;* ERROR MESSAGE PRINTING *
;* SUBROUTINE *
. * * I

;*****************************

I

OUTDO

;
ERPRNT

ORG $300
OBJ $800

EQU $DB5C

LOX #$0 ;INITIALIZE COUNT IN X
ERPl LOA ERR$,X ;FETCH ONE CHARACTER FROM

JSR OUTDO ;STRING AND OUTPUT IT.
INX ;INCREMENT X (THIS POINTS

TO THE NEX~ _CHAR!\fTER)
CPX 1$9 ;COMPARE- X TO 9 (THE NUMBER

CHARACTERS IN MESSAGE)
BNE ERPl ;NO CONTINUE OUTPUTTING
RTS ;YES, RETURN

ERR$ ASC '--ERROR-- '

;
END END

;*****************************
; * *
;* ERROR MESSAGE PRINT ING *
;*SUBROUTINE *
;* *
;*****************************

OU'I'DO

;
ERPRNT
ERPl

ORG $300
OBJ $800

EQU $DB5C

LOX #$0
LOA ERR$,X
JSR OUTDO
INX
CPX #$9
BNE ERPl
RTS

;INITIALIZE COUNT IN X
;FETCH ONE CHARACTER FROM
;STRING AND OUTPUT IT.
;POINT TO THE NEXT CHARACTER
;IS STRING DONE?
;NO CONTINUE OUTPUTTING
;YES, RETURN

CHAPTER 12 INDEXED ADDRESSING 83

030E 2D2D45 23 ERR$ ASC '--ERROR--'
0311 52524F
0314 522D2D
0317 24
0317 25 ;

26 END END

***** END OF ASSEMBLY

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

** ABSOLUTE VARIABLES/LABELS

OUTDO DB5C ERPRNT 0300 ERPl 030 2 ERR$ 030E END 0317

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:003A

This program also uses the Applesoft internal routine OUTDO to
output ASCII characters. Applesoft must be the current language in the
machine when attempting to run this routine.

Type in and assemble this program. You'll find a sizable number of
hex values in the machine code field on line 23. These are the ASCII
values for each of the characters in the string. All the values will prob
ably not fit on that line, so they'll be continued on the next line.

When the program is first entered, the first character of the string will
be printed. This is because the X register will have a 0 in it and the
indexed LDA instruction will just take the character found at the label
ERR$. Each time the loop is done, however, the X index register will be
incremented. This will cause the LDA to pick up the next character in
the string each time it is executed.

INDIRECT INDEXED ADDRESSING

Operation of the normal INDEXED addressing mode is fairly
straightforward. There is another addressing mode, INDIRECT
INDEXED, which, although not quite as simple, offers versatility to the
indexed addressing concept. Consider the one limitation of regular
INDEXED addressing as discussed so far. At the time of assembly, the
base address of the index operation must be specified. During program

84 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

execution, up to 255 bytes can be indexed forward of the base address.
Suppose you wanted to print a message that was longer than 256 bytes.

The INDIRECT INDEXED mode of addressing can solve some of
these problems by allowing you to index virtually anywhere in memory.
In the operand field, specify the address of a memory location in ZERO
PAGE. When the instruction is executed, it will take (as the base
address) the address pointed to by the values in that ZERO PAGE
memory location and the next one. In addition, the value of the Y
register will be added to form the effective address of the operation. An
example might help explain this operation.

1 AORL EPZ $18
2 AORH EPZ $19
3
4 LOA =#=$00
5 STA AORL
6 LOA =#=$FO
7 STA AORH
8 LOY =#=$01
9 LOA (AORL),Y

In lines 1 and 2, two consecutive ZERO PAGE locations are labeled.
In lines 4 through 7 the address $FOOO is stored. Remember, the 6502
will access all addresses low-order byte first, so the $00 is in the first
byte (ADRL) and the $FO is in the second byte (ADRH). Thus, the
base address is $FOOO. But since this instruction is also indexed by the Y
register, it will add the value of the Y register to the base address to get
the actual address. In this example, the Y register contains $01, so the
address from which data will be loaded in line 9 is going to be $FOO 1 (see
Figure 12-4).

BASE ADDRESS ($00)

l1l1l1l1lolololol
Location $19

+ ($01)

X Register

($F001)

l1i 1i1i1iololol1I
Location of data

to be loaded
into accumulator

Figure 12-4. INDIRECT INDEXED addressing mode

CHAPTER 12 INDEXED ADDRESSING 85

INDIRECT INDEXED is a very powerful addressing mode. Not only
does it allow indexing into any memory location, but it also manages to
do that using only two bytes - one for the op-code and the other for the
address of the first ZERO PAGE location of the pointer.

The following program will turn on the Apple II's high-resolution
graphics mode and clear the screen to black. However, unlike the HGR
or HGR2 commands available in BASIC, this routine uses the
INDIRECT INDEXED addressing mode to store Os in all of the
memory locations of the selected screen. This results in a virtually in
stant screen clear, compared to BASIC's rather slow dissolve.

1 ;*****************************
2 ; * *
3 ;* FAST HIRES SCREEN CLEAR *
4 ;* FOR EITHER HIRES PAGE *
s ; * *
6 ;*****************************
7
8
9 ORG $300

10 OBJ $800
11
12 ;
13 ADRL EPZ $18
14 ADRH EPZ $19
lS COLOR EPZ $30
16 HPAG EPZ $E6
17 SCALE EPZ $E7
18 ROT EPZ $F9
19 ;
20 GRAP SW EQU $COSO
21 FULLSW EQU $COS2
22 MIXSW EQU $COS3
23 SCRlSW EQU $COS4
24 SCR2SW EQU $COSS
2S HIRESW EQU $COS7
26
27 ;
28 CLRSC l LDA SCRlSW SCREEN #1 ENTRY POINT
29 LDA MIX SW SET FOR MIXED TEXT/GRAPHICS
30 LDA #$20 $20= HIGH ORDER ADDRESS, SCREEN u
31 JMP CLRl
32 CLRSC2 LDA SCR2SW ;SCREEN #2 ENTRY POINT
33 LDA FULLSW ;SET FOR FULL SCREEN GRAPHICS
34 LDA #$40 ; $40= HIGH ORDER ADDRESS, SCREEN #2
3S CLRl STA HPAG ;SAVE IN HIRES "PAGE" BYTE
36 STA ADRH ;AND IN HIGH ORDER ADDRESS
37 LDA HIRE SW ;THEN SET HIRES SWITCH
38 LDA GRAP SW ;AND GRAPHICS SWI TCH
39 LDA JI $1 ; SET SCALE = 1
40 STA SCALE
41 LDA #$0 ;AND ROT=O
42 STA ROT
43 STA COLOR COLOR=O, TOO
44 STA ADRL AS DOES LOW ORDER ADDRESS
4S CLC NOW, CALCULATE THE HIGH ORDER
46 LDA HPAG BYTE OF THE ADDRESS OF
47 ADC #$20 THE END OF THE SCREEN

86 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

48 TAX ;AND SAVE IN x
49 LDA COLOR ;COLOR=O (BLACK)
50 CLR2 LDY #$0 ;INITIALIZE Y TO CLEAR
51 CLR3 STA (ADRL),Y ;SIX ROWS OF SCREEN.
52 INY
53 BNE CLR3
54 INC ADRH ;NEXT SIX ROWS
55 CPX ADRH ;SCREEN DONE YET:
56 BNE CLR2 ;NO, CONTINUE
57 RTS ;YES, RETURN
58
59
60 END

ASSEMBLED PROGRAM:

**END OF PASS 1
**END OF PASS 2

0800 1
0800 2
0800 3
0800 4
0800 5
0800 6
0800 7
0800 8
0300 9
0300 10
0300 11
0300 12
0300 13
0300 14
0300 15
0300 16
0300 17
0300 18
0300 19
0300 20
03vu 21
0300 22
0300 23
0300 24
0300 25
0300 26
0300 27
0300 AD54CO 28
0303 AD53CO 29
0306 A920 30

0308 4Cl303 31
030B AD55CO 32
030E AD52CO 33
0311 A940 34

0313 85E6 35
0315 8519 36
0317 AD57CO 37
031A AD50CO 38
0310 A901 39
031F 85E7 40
03 21 A900 41
0323 85F9 42

;*****************************
; * *
; * FAST HIRES SCREEN CLEAR *
. * FOR EITHER HIRES PAGE * ,
; * *
·***************************** ,

ORG $300
OBJ $800

;
ADRL EPZ $18
ADRH EPZ $19
COLOR EPZ $30
HPAG EPZ $E6
SCALE EPZ $E7
ROT EPZ $F9
;
GRAP SW EQU $C050
FULLSW EQU $C052
MIXSW EQU $C053
SCRlSW EQU $C054
SCR2SW EQU $C055
HIRESW EQU $C057

;
CLRSCl LDA SCRlSW SCREEN il ENTRY POINT

LDA MIXSW SET FOR MIXED TEXT/GRAPHICS
LDA #$20 $20= HIGH ORDER ADDRESS,

SCREEN #10
JMP CLRl

CLRSC2 LDA SCR2SW ;SCREEN #2 ENTRY POINT
LDA FULL SW ;SET FOR FULL SCREEN GRAPHICS
LDA #$40 ;$40= HIGH ORDER ADDRESS,

SCREEN i2
CLRl STA HPAG ;SAVE IN HIRES "PAGE" BYTE

STA ADRH ;AND IN HIGH ORDER ADDRESS
LDA HIRE SW ;THEN SET HIRES SWITCH
LDA GRAP SW ;AND GRAPHICS SWITCH
LDA i$1 ;SET SCALE = 1
STA SCALE
LDA i$0 ;AND ROT=O
STA ROT

0325 8530 43 STA COLOR
0327 8518 44 STA ADRL
0329 18 45 CLC
032A A5E6 46 LDA HPAG
032C 6920 47 ADC f$20
032E AA 48 TAX
032F A530 49 LDA COLOR
0331 AOOO 50 CLR2 LDY f$0
0333 9118 51 CLR3 STA (ADRL),Y
0335 ca 52 INY
0336 DOFB 53 BNE CLR3
0338 E619 54 INC ADRH
033A E419 55 CPX ADRH
033C DOF3 56 BNE CLR2
033E 60 57 RTS
033F 58
033F 59

60 END

***** END OF ASSEMBLY

* * SYMBOL TABLE -- V 1.5 *

* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

CHAPTER 12 INDEXED ADDRESSING 87

;COLOR=O, TOO
;AS DOES LOW ORDER ADDRESS
;NOW, CALCULATE THE HIGH ORDER
;BYTE OF THE ADDRESS OF
;THE END OF THE SCREEN
;AND SAVE IN X
;COLOR=O (BLACK)
;INITIALIZE Y TO CLEAR
;SIX ROWS OF SCREEN.

NEXT SIX ROWS
SCREEN DONE YET:
NO, CONTINUE
YES, RETURN

ADRL 0018 ADRH 0019 COLOR 0030 HPAG OOE6 SCALE OOE7 ROT OOF9

** ABSOLUTE VARIABLES/LABELS

GRAPSW C050
SCRlSW C054
CLRSCl 0300
CLR2 0331

FULLSW C052
SCR2SW C055
CLRSC2 030B
CLR3 0333

MIXSW C053
HIRESW co57
CLRl 0313
END 03FF

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OOA2

This routine actually does more than merely clear the screen. This
should give some idea of just what goes into a seemingly simple BASIC
instruction like HGR. The part of this program that demonstrates the
use of the INDIRECT INDEXED addressing mode is in the last nine
lines of the program. Essentially, the goal here is to fill the entire range
of memory from $2000-$3FFF (for HIRES Page 1) or $4000-$5FFF
(for Page 2) with Os.

Suppose the goal is to clear HIRES Page 1 (that is, store a 0 in every
byte from $2000-$3FFF). Store a pointer to the first byte of the screen,
$2000, in the two ZERO PAGE memory locations labeled ADRL,H.
Then load the accumulator with a 0. Store the value 0 in all memory
locations in the accumulator that can possibly be indexed into using the
Y register (locations $2000- $20FF). Afterward, increment the value in
ADRH. It was formerly $20, and is $21 after the increment, so now the

88 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

pointer in ADRL,H is at $2100. Repeat this process until the entire
screen memory is filled with Os .

ENTRY POINTS

As well as demonstrating INDIRECT INDEXED addressing, the pre
vious routine has a structural feature that has not yet been discussed -
two different entry points. In assembly language programming, as in
BASIC programming, it is common to use different entry points to a
routine. This allows the combination of two or more relatively similar
operations in the same routine. In the sample routine, entering at loca
tion CLRSCl will set HIRES screen 1 and clear it. Entering the routine
at CLRSC2 will set HIRES screen 2 and clear it.

INDEXED INDIRECT MODE

One other INDEXED addressing mode that the 6502 can use is the
INDEXED INDIRECT addressing mode. It is seldom used in 6502 as
sembly language programming on the Apple II because it uses up a lot of
valuable ZERO PAGE memory.

In the INDIRECT INDEXED addressing mode, the effective address
of the instruction is created by the address contained in the ZERO
PAGE location specified in the operand and next location, plus the
value of the Y register. In comparison, instructions using INDEXED
INDIRECT addressing load (or store) values from (or to) the address
contained in a pair of ZERO PAGE locations which are derived as the
sum of a base ZERO PAGE operand address plus the value in the X
register. An example of INDEXED INDIRECT addressing is

1 LDA #$FF
2 STA $03
3 STA $04
4 LDX #$03
5 LDA ($00,X)

Lines 1 through 3 store an address ($FFFF) in ZERO PAGE locations
$03 and $04. These locations now "point" to address $FFFF. In line 4,
the X register is set to a value of 3, and in line 5 the accumulator is
loaded from the memory location pointed to by the ZERO PAGE loca
tions at the base address ($0) plus the value of the X register (3). As this
is address $3 (which, along with the next location, points to address

CHAPTER 12 INDEXED ADDRESSING 89

$FFFF), the accumulator is loaded with the current value of location
$FFFF.

SUMMARY

INDEXED addressing mode can usually use either the X or the Y
register. Instructions are of the form

MNEMONIC ADDRESS.REGISTER

For example,

LOA LABEL,X

In this mode, the value of the index register is added to the operand
address to form the actual address for the instruction. INDIRECT
INDEXED addressing uses the Y index register only. Instructions are of
the form

MNEMONIC (ZERO PAGE address), Y

For example,

LOA (LABEL) , Y

The INDEXED INDIRECT addressing mode is seldom used in 6502
assembly language programs for the Apple II . Just so you may recognize
it, instructions are of the form

MNEMONIC (ZERO PAGE address. X)

For example,

LOA (LABEL, X)

13
Equivalent Values

And the Negative Flag
Instructions discussed in this chapter include the following:

• BPL - Branch on result plus. Branches to the specified address if the
Negative flag is cleared; otherwise continues program execution with the
next statement.

• BMI - Branch on result minus. The complement to BPL; branches only if
the Negative flag is set.

In assembly language, a single byte may represent any integer in the
range 0 to 255 or it may represent any integer in the range -128 to
+ 127. When expressing integers, Applesoft treats both positive
integers or their negative equivalents identically, since they are actually
the same number. Thus, in Applesoft, the following two instructions are
equivalent:

10 CALL -151 : REM GOTO MONITOR
20 CALL 65385 : REM GOTO MONITOR

Both of these call the Apple Monitor entry point at $FF69. The two
values -151 and 65385 are both equivalent to $FF69.

Signed single-byte arithmetic is rarely used in assembly language pro
gramming, but knowledge of the structure of signed values can be very
useful since it incorporates the use of the Negative flag.

The Negative flag works just like all the other 6502 flags. Certain
internal operations will either set or clear it, depending on the sign of

91

92 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

the result. Some of the operations that affect the Negative flag are add,
subtract, compare, load, increment, decrement, and transfer opera
tions. Any operation that affects the Zero flag also will affect the Nega
tive flag.

For the purpose of identification, the 6502 considers any number to
be negative if the high-order bit is set. This means any single-byte value
greater than $7F (127) is considered negative. To expand this defini
tion, if the result of any internal operation is a value greater than $7F,
the Negative flag will be set. If the value is $7F or less, the Negative flag
will be cleared.

This feature is particularly good for index operations that use decre
menting loops, provided the index is not initialized to some value
greater than $80. For example

l LOY f$09 ;INITIALIZED COUNT
2 LOOP LDA DATA,Y ;GET DATA FOR SUBROUTINE
3 JSR SUBRTN ;DO SUBROUTINE
4 DEY ;DECREMENT COUNT
5 BPL LOOP ;IF Y<$FF THEN LOOP
6 RTS ;ELSE, RETURN

In this subroutine, the value of the index Y will be decremented and
the loop will be performed as long as the value of Y is not negative (it
will not be negative ifit is 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0). But when it is
decremented again, Y will have a value of $FF which , having its high
order bit set, is a negative value. The Negative flag will, of course, be set
by this operation, so the branch will not occur.

The same function could have been performed using a compare
(CPY) instruction. However, it would have taken longer to execute the
same code, and it would have taken up more space.

14
Logic Functions

Instructions in this chapter include the following:
• AND - Logically AND the value in the accumulator and a value in a

specified memory location, leaving the result in the accumulator.

• ASL - Arithmetic shift left. Shifts all bits in a byte (either accumulator
or memory) once to the left, thus leaving a 0 in the lowest order bit, and
moving the value from the highest order bit into the Carry (see Figure 14-
1).

• EOR - Exclusive OR memory and accumulator. Logically Exclusive ORs
the value in the accumulator and that in a specified memory location, leav
ing the result in the accumulator.

• LSR - Logical shift right. Complement to ASL; shifts all bits in a byte
(either accumulator or memory) once to the right, thus leaving the low
order bit in the Carry, and a 0 in the high-order bit (see Figure 14-2) .

• ORA - OR accumulator and memory. Logically OR the accumulator and
a specified memory location, leaving the result in the accumulator.

• ROL - Rotate left (accumulator or memory) . Rotates all bits to the left ,
through the Carry; similar to ASL, but the value in the Carry before the
operation is not lost, but is instead moved into the lowest order bit (see
Figure 14-3).

• ROR - Rotate right. Complement to ROL; performs a similar operation,
but rotates to the right (see Figure 14-4).

Logical operations are used to manipulate the bits in a byte. Move and
transfer operations just move entire bytes from one place to another.

93

94 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

ASL

1 i I i I i I i I i I i 1 i I i I~ I i I i 1 i 1 i 1 i I i I i I o I
Memory Location i / Memory Location

Figure i 4-1. Arithmetic shift left

LSR

1i1 i 1 i I i 1 i 1 i 1 i 1 i I ~Io I i I i I i I i I i I i I i I
Memory Location Memory Location \... i

Figure i4-2. Logical shift right

ROL

Carry Carry
F~ F~

1 i I i I i I i I i 1 i 1 i I ii~ 1 i I i I i I i I i I i I i I i I
Memory Location i ::._...-/ Memory Location

Figure i4-3. Rotate left

ROR

Carry Carry
F~ F~

I i 1 i I i 1 i I i 1 i 1 i 1 i I~ I i I i I i I i I i I i I i I ii
Memory Location Memory Location \... i

Figure i4-4. Rotate right

CHAPTER 14 LOGIC FUNCTIONS 95

Arithmetic operations treat all bytes as representing an arithmetic value.
Logical operations treat bytes as representing a series of bits. Classical
hardware models, as well as BASIC examples, will be used in describing
the operation of logical instructions.

AND, OR, AND EOR

The primary unit of digital electronics is the "logic gate." Simply put,
this is a device with two inputs and one output. The binary state of the
output will depend only on the binary states of the inputs. One type of
logic gate is the AND gate. The electronic schematic for the AND gate is

Input (A)-----1\.__ Output (C)
Input (B) ___r-L....I

Since this is a binary device, the inputs can be in one of two states: 0
or 1. The output can be in only one of these states as well. Simply stated,
an AND gate works as follows: if input A is equal to 1, and input B is
equal to 1, then the output equals 1.

In BASIC, this could be stated as

10 C=O
20 IF A=1 AND 8=1 THEN C=1

The output will be 1 only if both inputs are 1. Otherwise, the output
will be 0. In the 6502 instruction set, the AND operation will perform
logical ANDs on every bit in the accumulator with their positional
equivalent bits on a byte in memory. This could be illustrated as in
Table 14-1 .

First, the lowest order bits are ANDed together. In this example,
both are 0, so the result is 0, and the next higher bits are ANDed. Here
each is 1 so the result is 1. This same process occurs for the rest of the

Table 14-1. AND Operation

Accumulator
Memory Location
AND

Binary

1100 1010
1001 1110
1000 1010

Hex Decimal

$CA 202
$9E 158
$8A 138

96 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

bits in the accumulator and memory byte. The result of the entire opera
tion is left in the accumulator.

Another type of logic function is the OR. Its electronic schematic is

Input (A)~ Output (C)
Input (B) _J-L.../

If input A equals 1 or input B equals 1, then the output equals 1. This
condition is also true if both inputs equal 1. In fact, the only time the
output will equal 0 is when both inputs equal 0. We could construct the
following similar structure in BASIC:

20 C=O
30 IF A=1 OR B=1 THEN C=1

The assembly language instruction which ORs two values together is
ORA, which ORs the value in the accumulator with a value in memory
(see Table 14-2).

Starting with the lowest order bits, OR each bit pair together. In this
example, all but the high-order bit pair has at least one bit equal to 1, so
all of the resultant bits are set to 1. As with the AND operation, the
result of the OR operation is left in the accumulator.

The last of the logical operations involving both the accumulator and
memory is the Exclusive OR. Its electronic schematic is

Input (A)~ Output (C)
Input (B) __s-1

Although BASIC does not have an EOR function specifically, it can
be represented by the following:

10 C=O
20 IF A< >B THEN C=1

Accumulator
Memory Location
OR

Table 14-2. OR Operation

Binary

0011 1110
0111 0011
0111 1111

Hex Decimal

$3E 62
$73 115
$7F 127

CHAPTER 14 LOGIC FUNCTIONS 97

Table 14-3. EOR Operation

Accumulator
Memory Location
EOR

Binary

1001 1110
1111 0100
0110 1010

Hex Decimal

$9E 158
$F4 224
$6A 106

Consider the operation outlined in Table 14-3. The Exclusive OR
function can be thought of as an inverted compare. That is, when the
two inputs are different, the output will be high, and when they are the
same, the output will be low.

A variety of different addressing modes is available for these logical
operations, including the following examples:

1 SAMPLE AND #$80
2 AND iVALUE
3 AND LABEL
4 AND BUFFER,X
5 AND (ADRL) ,Y
6 ORA #VALUE
7 ORA / LABEL
8 ORA (POINTL) , Y
9 ORA LAB
10 EOR #COLOR
11 EOR BUFFER,Y

Remember, all of these operations leave the result in the accumulator
and affect both the Zero flag and the Negative flag. To find all of the
addressing modes available, see Appendix F.

SHIFTS AND ROTATES

Shift and rotate operations comprise another type of logical operation
available in the 6502 instruction set. They differ from the above opera
tions in that they change either the value in the accumulator or the
value of a memory location; their operations never involve both.

To illustrate how a shift operation works , consider Table 14-4. In a
left shift, all of the bits in a byte are moved over one position to the left.
The " hole" that is left in the space formerly occupied by the lowest
order bit is always filled with a 0. The highest order bit is moved into the
Carry flag.

98 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

Consider Table 14-5. Again, all bits are moved one place to the left,
and a 0 is placed in the least significant bit. The most significant bit is
shifted into the Carry flag, and the original value of the carry is lost.
Each time a value is shifted to the left, that number is in effect multi
plied by 2, as long as a 1 bit doesn't get shifted off the end, in which case
a carry is generated.

Consider this instruction's complement, LSR, as shown in Table 14-
6. In this operation, all bits are shifted once to the right, and a 0 is placed
in the high-order bit. The low-order bit is shifted into the Carry flag, and
the original value of the carry is lost.

There are also two operations which are similar to shifts, only nothing
is lost. Those are the rotate instructions. Instead of setting a bit to 0 and
losing one bit, these instructions simply move the bits around in a circle.

Consider the ROR instruction as shown in Table 14-7. In this opera
tion, the carry is moved right, into the high-order bit position. The rest
of the value is shifted right, with the lowest bit ending up in the carry.
Every time this operation is performed, the bits move one place, but no
bits are ever lost. In fact, if this operation were performed nine times,
the original value and the original carry would be restored.

The last instruction of the series, ROL, is the complement of ROR, as
shown in Table 14-8. Here the carry is shifted into the low-order bit, and
the value is shifted left. Once again nothing is lost, so if this operation
were performed nine times, the original value and carry would be
restored.

Shift and rotate operations are available using a variety of addressing
modes, including the ACCUMULATOR mode. To use this addressing
mode with the LISA assembler, put the mnemonic in the mnemonic
field, but put nothing in the operand field. This is the same method used
with IMPLIED addressing instructions.

1 LABEL ASL
2 LSR
3 ROL
4 ROR

SHIFT ACCUMULATOR LEFT
SHIFT ACCUMULATOR RIGHT
ROTATE ACCUMULATOR LEFT
ROTATE ACCUMULATOR RIGHT

NOTE: If an assembler other than the LISA assembler is used, you may
have to put the letter "A" in the operand field, to denote the
ACCUMULATOR mode. If in doubt, see the assembler's user's manual.

The other addressing modes available for this family of instructions
are ZERO PAGE, ZERO PAGE INDEXED BY X, ABSOLUTE, and
ABSOLUTE INDEXED BY Y. Typical code might look like the follow
ing:

CHAPTER 14 LOGIC FUNCTIONS 99

l START ASL VAL
2 LSR ZPVAL
3 ROL ZPVAL,X
4 ROR BUFFER,Y

When the instructions discussed in this chapter are used with any of
these addressing modes, they affect a byte in memory, not the
accumulator.

Table 14-4. Shift Operation

Memory Location

ASL

Binary

0000 0001

0000 0010

Memory Location
ASL

Memory Location
LSR

Accumulator
ROR

Table 14-5. ASL Operation

Carry

1
0

Binary

0010 1001
0101 0010

Table 14-6. LSR Operation

Carry

0
1

Binary

1100 1001
0110 0100

Table 14-7. ROR Operation

Carry

1

Binary

0010 0101
1001 0010

Hex

$01

$02

Decimal

1

Hex

$29
$52

Hex

$C9
$64

2

Decimal

41
82

Decimal

201
100

Hex Decimal

$25 37
$92 146

100 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

Memory Location
ROL

Table 14-8. ROL Operation

Carry

1
0

Binary

0010 0010
0100 0101

APPLICATIONS

Hex

$22
$45

Decimal

34
69

Some applications for logical instructions include the following:
• AND - Bit mask testing; testing a value to see if a certain bit is on, and

clearing unwanted bits from a byte.

• OR - Testing a value to see if a certain bit is off; setting. certain bits in a
byte.

• EOR - Complementing a value.

• ASL, LSR - Multiplying or dividing a multiple-precision value by 2;
sequential bit tests.

• ROL, ROR - Branching on status of either the high-order bit or the low
order bit, using the carry; sequential bit tests, saving the original value.

15
Debugging Instructions

Instructions discussed in this chapter include the following:

• NOP - No operation. This is the null instruction of the 6502 instruction
set; memory, registers, and flags are not affected.

• BRK - Break. Used in debugging; upon executing a break instruction, the
6502 will jump to the address found in locations $FFFE and $FFFF.

The two most commonly used methods of debugging a BASIC pro
gram involve either deleting (or remarking over) suspect lines, and the
insertion of STOP instructions in the code. The 6502 instruction set
contains instructions that allow you to perform similar operations in as
sembly language. These are the NOP and BRK instructions. Consider
the following BASIC code:

100 A= B + C
110 GOSUB 2000
120 PRINT AN$

If, while debugging, you find that the subroutine at line 2000 is incor
rect, the GOSUB instruction could be eliminated and the program run.
This is accomplished by typing the line number and running the pro
gram. In asilembly language, if you suspect some piece of code is causing
problems and you want to eliminate it, you must reassemble the pro
gram, resave it, reload it, and so forth.

101

102 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE 11

The NOP instruction is useful in cases like these. Consider the follow
ing code:

300
302
305
306

A502
205003
A8
8C6D03

1 LDA ADRL
2 JSR SUB1
3 TAY
4 STY INDEX

Say the JSR instruction in line 2 is causing problems. To eliminate it
temporarily, put NOP instructions in each of the three bytes that the
JSR instruction now takes. Once this is done, the JSR instruction is
effectively removed from the code. The procedure to patch over a sec
tion of code is as follows:

1. BLOAD the object code into memory at the address from which it origi
nated.

2. Enter the Apple II's monitor.

3. Disassemble the suspect code with the L monitor command. Using the
sample code above, you would type 300L.

4. Look at the disassembly and calculate both the starting address and the
number of bytes of the code to be patched over. Write down the values of
the bytes to be replaced. If it turns out that something else is causing the
problem, you'll want to be able to restore those bytes without reloading
the object file .

5. Using the monitor's STORE IN MEMORY command, replace all bytes in
the suspect code with the value $EA. This is the op-code value for the
6502's NOP instruction. In the previous example, type 302: EA EA EA.

6. Finally, disassemble the code again, to make sure that only the code
desired was patched over with no-ops. Then, run the code using the G
monitor command.

If all of this was done using the example, the new disassembly of the
object code would look like the following:

0300: A502 LDA $02
0302: EA NOP
0303: EA NOP
0304: EA NOP
0305: A8 TAY
0306: 8C6D03 STY $360

Another useful debugging instruction is the BRK instruction. With it,
you can perform the same kind of assembly language code debugging as
you could in BASIC using the STOP command. When BASIC interprets

CHAPTER 15 DEBUGGING INSTRUCTIONS 1 03

a STOP command, it halts program execution and prints the line num
ber of the STOP instruction. The BRK instruction in the Apple II does
even more to help the debugging effort.

When the 6502 executes a BRK instruction, it jumps to the address
found in two special locations: $FFFE and $FFFF. These two addresses
direct, or vector, program execution to a special BRK instruction han
dling routine in the Apple II monitor ROM. This routine not only halts
program execution, but also prints the location at which that execution
stopped and the current value of each of the 6502's registers.

The op-code for the BRK instruction is $00. Break instructions can be
patched into code the same way that NOPs are patched. Or, if you are as
sembling a reasonably long program and are not overly optimistic about
its success the first time, break instructions can be put into the source
code at regular intervals.

After the code is assembled, and it is time to debug the program, you
can run the program and eliminate the BRKs one by one as you verify
that a section of code is functioning properly. If you have included the
break instructions correctly in the source code, the easiest way to elimi
nate them is by patching them over, using the techniques described ear
lier, with NOP instructions. Finally, when the code works, reassemble it
without the BRK instructions.

Both BRK and NOP instructions are single-byte instructions with no
operands. Since they are often used from the monitor, it would be a
good idea to remember their op-codes. Their op-codes are

BRK = $00
NOP= $EA

When programming, you will find these to be the most useful instruc-
tions in the entire 6502 instruction set.

NOTE: For some reason, when using the BRK instruction with the Apple
II, the value given for the location at which program execution stopped is 2
more than it should be. This is one of the very few firmware bugs in the
Apple II. When using the BRK instruction, remember to subtract 2 from
the "stopped at" value given.

16
The Stack

Instructions to be covered in this chapter include the following:

• JSR - Jump to Subroutine. Similar to JMP, but saves a return address .on
the stack like a GOSUB in BASIC.

• PHA - Push accumulator onto the stack; puts the current value in the
accumulator onto the top of the stack (see Figure 16-1).

• PLA - Pull accumulator off the stack. Takes one byte off the top of the
stack and stores it in the accumulator (see Figure 16-2).

PHA

Accumulator

Stack

Figure 16-1. Push accumulator onto stack

105

106 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

• RTS - Return from subroutine. Pulls a two-byte address off the stack, and
resumes program execution at that address.

The only two places where the 6502 can keep a value are in one of its
internal registers or in memory. One area of memory, Page 0, is special
because instructions accessing it take up less space and operate faster.
Indirect instructions also use ZERO PAGE addresses for their pointers.

Another special area in the 6502's memory is Page 1, which goes
from $100 to $1FF. This area is called the "stack." The 6502 instruction
set has a number of instructions that use the stack.

ORDER OF THE STACK

The stack (sometimes called a "push-down stack" or "last-in, first-out
storage") behaves very much like the apparatus used to store and serve
plates in a restaurant. Each time a plate is placed on top, the stack sinks
down. When you pull the top plate off the stack, the rest pop up, making
the new top plate flush with the top of the apparatus. Only one plate can
be pushed onto this stack at a time and only one plate can be removed
from the stack at a time. The only access to this stack is from the top. A
plate can never be pulled out of the middle or from the bottom. For this
reason, the last plate put on the stack is always the first to be pulled off.

The 6502 stack behaves just like the restaurant plate stack, but is a
stack of bytes, rather than a stack of plates. Up to 256 bytes may be
stored on the 6502 stack.

PLA

Accumulator

Stack

Figure 16-2. Pull accumulator off stack

CHAPTER 16 THE ST ACK 1 0 7

PHA AND PLA

Two instructions in the 6502 instruction set allow you to push the value
in the accumulator onto the stack (PHA) or to pull off the value on the
top of the stack (PLA), and then store it in the accumulator. Since they
don't affect any addressed memory locations, their addressing mode is
IMPLIED. Therefore, they don't require an operand.

l
2

LABEL PLA
PHA

;PULL ACCUMULATOR FROM STACK
;PUSH ACCUMULATOR ONTO STACK

These two instructions are suited for temporary storage. To save the
value currently in the accumulator, use a temporary memory location as
in the following:

20 LABEL
30
40

STA TEMP ;SAVE ACCUMULATOR
JSR SUB ;DO SUBROUTINE
LOA TEMP ;RESTORE ACCUMULATOR

If the value in the accumulator were saved in a ZERO PAGE location,
the entire temporary store-load operation would take four bytes of code.
If you were to use the stack for temporary storage, it would only take
two bytes of code and would execute faster.

50 LABEL
51
52

PHA
JSR SUB
PLA

;SAVE ACCUMULATOR
;DO SUBROUTINE
;RESTORE ACCUMULATOR

Temporary saves on the stack have the added advantage of not taking
up a lot of valuable ZERO PAGE space. This becomes important when
saving more than one byte.

23 LABEL PHA ;SAVE ACCUMULATOR
24 TXA
25 PHA ;SAVE X REGISTER
26 TYA
27 PHA ;SAVE Y REGISTER
28 JSR SUB ;DO SUBROUTINE
29 PLA
30 TAY ;RESTORE Y REGISTER
31 PLA
32 TAX ;RESTORE X REGISTER
33 PLA ;RESTORE ACCUMULATOR

When storing more than one value on the stack, remember the stack
is a last-in , first-out device. Therefore, pull off values in the opposite
order from which they were pushed on.

1 08 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

JSR AND RTS

The stack is also used by the JSR and RTS instructions. As mentioned
earlier, they behave much like their BASIC equivalents, GOSUB and
RETURN.

First consider what happens when a JSR instruction is executed. The
RETURN address (the address of the next instruction following the JSR
in memory) is pushed onto the stack, one byte at a time. Then the 6502
performs a jump to the specified subroutine address.

At the end of the subroutine, the 6502 finds an RTS instruction.
When this RTS is executed, two bytes are pulled off the stack, which the
6502 assumes are the current return address for the subroutine. It does
a jump to that address, and program execution resumes there. This
means that, just as in BASIC, a limited number of subroutines may be
nested. In practice, however, that limit is very rarely reached.

By the way, there is no equivalent 6502 assembly language instruction
to the BASIC POP instruction. But it can be emulated with two PLA
instructions, thus effectively removing the last return address from the
stack. Then, the next time an RTS instruction is executed, the pre
viously nested return address will be used.

When using the stack for temporary storage, be careful not to confuse
return addresses with data. This could happen if you attempted to push a
value on the stack for temporary storage, and then tried to pull it off
after entering a subroutine, but before its return . Since the last thing
that went on the stack was the return address, you would be attempting
to pull the wrong thing. For example:

l
2

LABEL PHA
JSR SUB

At this point, the top of the stack would look like the following:

RETURN ADDRESS (HIGH-ORDER BYTE)
RETURN ADDRESS (LOW-ORDER BYTE)
DAT A FROM ACCUMULATOR

Attempting to pull the accumulator off the stack now would yield one
of the return address bytes instead, since that's what's on the top of the
stack. To keep things straight, just remember to both push and pull the
same number of bytes within any one subroutine. Also keep in mind
that both the JSR and the R TS instructions use the stack and will affect
its contents.

CHAPTER 16 THE STACK 109

NOTE: Because of the way the 6502 performs a return, the actual value of
the return address pushed onto the stack by a JSR instruction is the
address of the instruction following the JSR instruction, minus 1.

A
Instructions Not Covered

In this Book
A few 6502 instructions were not described in detail in this book and
don't belong to any family of instructions. Because of the construction
of the Apple II, including hardware, firmware, and available peripherals,
certain instructions are rarely used. These instructions will be briefly
discussed in this appendix.

BIT - Test bits in memory. The BIT instruction behaves exactly like the
AND instruction, except that result of the logical AND is not stored in the
accumulator. As previously discussed, the AND instruction performs a
logical AND on each bit of the value in the accumulator with each bit of
the value in a specified memory location. The resulting value is stored in
the accumulator. The BIT instruction does all of this, too, only the result is
not stored in the accumulator or anywhere else.

Whenever any logical or arithmetic operation occurs in the 6502,
various flags are set or cleared, depending on the value of the result of the
operation. These flags may be tested and subsequent operations per
formed, depending on their states. The Minus, Overflow, and Zero flags
are all affected by this instruction.

BVS - Branch on overflow set. When this branch instruction is encoun
tered, a branch to the specified location will occur if the Overflow flag is
set. Otherwise, execution will continue with the next instruction. The
Overflow flag is the sixth bit (second MSB) of the status register. All logi
cal and arithmetic instructions affect the Overflow flag. If the result of any
logical or arithmetic operation has a 1 in the sixth bit, the Overflow flag will

111

11 2 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

be set by the operation . Conversely, if the result has a 0 in the sixth bit, the
Overflow flag will be cleared.

BVC - Branch on Overflow flag cleared. This is the complement instruc
tion to BYS. When a BVC is encountered, if the Overflow flag is cleared, a
branch will occur to the specified location. If it is set, program execution
will continue with the next instruction.

CLO - Clear decimal mode. Sets up the 6502 to do normal binary
arithmetic. The 6502 is capable of performing arithmetic operations on two
types of values: binary bytes and bytes of BCD (binary-coded decimal)
digits . The Apple II never uses the BCD mode. All of its math is done in
binary. However, if the 6502 were to be used in processes requiring large
amounts of decimal (fixed-point) processing, the decimal mode might be
selected. In this mode, all bytes are considered to be two BCD digits, each
with an arithmetic range ofO to 9. Thus, in the decimal mode, a single byte
may represent any arithmetic value in the range 0 to 99. Once again , this
mode is not used in any of the Apple II's internal software or firmware.

CLI - Clear interrupt disable flag. Allows the 6502 to accept hardware
interrupts. The 6502 chip has a pin on it that an external device requiring
immediate attention can pull down. This is the IRQ (interrupt request)
pin. There are times, however, when a running program may want to
ignore (disable) interrupts for a while. This usually occurs in sections of
code where time is critical. In these cases, interrupts may be disabled using
the SEI instruction (see below). When interrupts are to be allowed again,
the CLI instruction is issued and interrupt processing is performed
normally.

The Apple II system does not use interrupts for any of its own applica
tions. However, peripheral cards which plug into the Apple may generate
interrupts. For this reason, Apple DOS disables interrupts whenever a disk
operation is to occur (disk operations are time-critical) , and reenables
them when the disk operation is over.

CL V - Clear Overflow flag. Sets the value of the Overflow flag (the sixth
bit of the status register) to 0.

JMP (indirect) - Jump to new location . Continues program execution at
the address specified by the value contained in the operand address and the
next one in memory. This instruction allows a program to dynamically
alter the target address of a jump instruction. Addressing is similar to
indirect addressing used in other instructions. For example

LOA #00
STA PTR
LOA #01
STA PTR+l
JMP (PTR)

APPENDIX A INSTRUCTIONS NOT COVERED IN THIS BOOK 113

When executed, this code would effect a jump to location $100.

PHP - Push processor status on stack. Pushes the values of the status
register, which contains all of the flags, onto the stack. Sometimes it is con
venient to save the current status so that it can be used later. This occurs
frequently when a series of logical or arithmetic operations occurs, and a
conditional branch will occur as a result of the first one. Consider the
following code:

LOA :#:0
AND :#:0

Eventually a branch will be desired as the result of this operation, but more
operations are desired first. As the next operation might affect the status
flags, the current status can be saved and other operations performed.

PHP
ORA THIS
EOR THAT

Finally, the original status can be restored with a PLP instruction and a
branch performed.

PLP
SEO THERE

Processor status is also saved and restored during certain debugging opera
tions and during interrupt processing.

PLP - Pull processor status from the stack. This is the complementary
instruction to PHP. Restores processor status register (flags) from the
stack.

RTI - Return from interrupt. As mentioned in the discussion of the CLI
instruction, the 6502 may be interrupted by an external hardware device. If
an interrupt does occur, program execution is transferred to an interrupt
vector (a special place in memory that holds the address of the code to
execute on an interrupt). This code, called an "interrupt handler," must
end with an RTI instruction. This instruction will restore the original status
of the 6502 (before the interrupt) and return control to the program that
was interrupted. As mentioned, interrupts are not used by any of the
Apple's internal firmware or software.

SED - Set decimal mode. Initializes the 6502 to perform arithmetic
operations on BCD values. See CLD for more information.

SEI - Set interrupt disable status. Disables the 6502 from being inter
rupted via the IRQ pin. For more details, see the CLI instruction.
TSX - Transfer the value of the stack pointer to the X register. The 6502
stack is actually a page in memory. It resides at memory locations $100-
$1FF (Page 1) . The stack pointer always specifies or "points out" the byte
in Page 1 that is the current "top of stack."

B
Where to Go from Here

Since this book is an introduction to assembly language programming
for the Apple II, not all aspects of 6502 programming are covered in
detail, and some are not covered at all. The following books are written
specifically for the 6502.

6502 Assembly Language

Osborne/McGraw-Hill has two books available on 6502 assembly
language including 6502 Assembly Language Programming by Lance
Leventhal and 6502 Assembly Language Subroutines by Leventhal and
Winthrop Saville.

MOS Techology 6500 Programming Manual

This book is from the designers of the 6502. It covers the entire 6500
family and contains programming examples. It is available at most com
puter stores or from Synertek, Rockwell International, or your Apple
dealer.

MOS Technology 6500 Hardware Manual

This book is essential for those planning on building hardware. A vaila
ble from the same sources as the programming manual.

115

116 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

6502 Software Gourmet Guide and Cookbook

This book is not only an excellent guide to the 6502 instruction set, but
also contains several useful, well-written programs and subroutines
which can be used right away in your own routines. Written by Robert
Findley, the book is available from your computer store or from the
publisher:

Scelbi Computer Consulting, Inc.
Elmwood, CT 06110

THE APPLE

Several good sources of assembly language programming information
are designed especially for the Apple. If you 're serious about Apple pro
gramming, join a local Apple user's group. Almost every area of the
country has at least one, many of which publish newsletters. Most of
these groups also have at least one member who has considerable
expertise in assembly language programming. Some groups even have
assembly language programming classes.

In addition to joining your local group, consider joining the largest
user's group in the world. The Apple Puget Sound Program Library
Exchange publishes a "newsletter" that is one of the best magazines on
Apple around. To join, contact:

A.P.P.L.E.
304 Main A venue South

Suite 0500
Renton, WA 98055

(206) 271-4514

MAGAZINES

Two magazines are very useful to 6502 programmers.

Nibble

This is the best source of information on the Apple, because it's written
totally for Apple users. This monthly magazine contains a wealth of
information by some of the best authors in the business.

APPENDIX B WHERE TO GO FROM HERE 11 7

Check your computer store or write:

Micro

Nibble
Box 325

Lincoln, MA 01773
(617) 259-9710

Another good source of Apple information, this magazine is written
specifically for the 6502. Remember that many assembly language pro
grams written for the PET, AT ARI, or OSI computers will also work on
the Apple.

Check your computer store or write:

Micro
Box 6502

Chelmsford, MA 01824
(617) 256-5515

PROGRAMMING BOOKS

Several books can help with assembly language programming for the
Apple II, as well as general computer programming.

The Apple II Monitor Peeled

William Dougherty completely covers all of the routines available in the
Apple II monitor ROM. As the exercises in this book show, the Apple II
monitor contains many powerful routines.

Available from the author:

The Wozpak II

William E. Dougherty
14349 San Jose St.

Los Angeles, CA 91345

Although publication delays made this book somewhat dated, many of
the "hidden" features of the original Apple II (Integer BASIC, non
autostart ROM) are covered in detail here. This book was written by

11 8 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

Steve Wozniak and is available from:

Beneath Apple DOS

A.P.P.L.E.
304 Main A venue. S.

Suite #300
Renton, WA 98055

(206) 271-4514

This book discusses Apple DOS, including how to access it from your
assembly language programs. A very thorough treatment of the subject,
the book was written by Don Worth and Pieter Lechner of Quality Soft
ware. Write to:

Quality Software
6660 Reseda Blvd.
Reseda, CA 91335

(213) 344-6599

The Art of Computer Programming,
Volume 1 : Fundamental Algorithms

This is the first book in a series written by Donald Knuth . Available
from computer stores, college book stores, or the publisher:

Software Tools

Addison-Wesley
South Street

Reading, MA 01867
(617) 944-3700

This book contains a number of universally useful algorithms. Another
classic that no serious programmer should be without, this book was
written by Brian W. Kernighan and P. J. Plauger: Available from most
computer literature sources or from the publisher:

Addison-Wesley
South Street

Reading, MA 01867
(617) 944-3700

c
Some Apple II Assemblers

At least six assemblers are commonly available for the Apple II, includ
ing the following.

LISA ASSEMBLER

This assembler is both easy to use and powerful. It contains an exten
sive set of assembler directives and operates swiftly. The text insertion
mode takes a little getting used to, but is convenient once mastered.
This is the only assembler that uses an integrated text editor, allowing it
to scan lines as they are input and print appropriate syntax error
messages. For this reason, it is highly recommended for beginners. It is
available from

On-Line Systems
36575 Mudge Ranch Road

Coarsegold, CA 93614
(209) 683-6858

119

120 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

S-C ASSEMBLER

Of all assemblers available for the Apple II, the S-C assembler behaves
the most like BASIC/DOS, allowing more time to be spent learning as
sembly language programming, instead of how to use the assembler.
Therefore, it is highly recommended for beginners. It contains a good
set of assembler directives and has the ability to assemble object code
directly to disk (a useful feature for long programs). The documenta
tion, which is in two parts, is good. Order from

S-C Software
Box 280300

Dallas, TX 75228
(214) 324-2050

TLA ("The Last Assembler")

This assembler, which comes with the Apple II Language System, is one
of the most powerful assemblers available for the Apple II. It uses the
excellent Pascal text editor. It also supports both macro and condition&l
assembly - two key features for advanced assembly language program
ming. Unfortunately, it is only usable from within the language system.
This means it cannot be used to write code for BASIC programs. It con
tains excellent documentation.

The TLA assembler is part of the Apple II Language System .which is
available from your computer store.

APPLE 6502 ASSEMBLER/EDITOR

Part of the Applesoft Tool Kit, this assembler is a disk of utilities put out
by Apple. The assembler features a reasonable (but not extensive) set
of assembler directives, and can generate relocatable code (a most
powerful feature). The Applesoft Tool Kit with Apple 6502 Assembler/
Editor is available from your computer store.

D
LISA, Applesoft Tool Kit,

And S-C Assembler
Directives

In the later chapters of this book, all program listings are given in the
format of the LISA assembler only. To help those using the S-C assem
bler or Applesoft Tool Kit, the following assembler directive com
parison chart has been compiled.

LISA S-C

ASC
ADR
END
EQU
EPZ
HEX
ICL
LST
NLS
ORG
PAG

.AS

.DA

.EN

.EQ

.EQ

.HS

.IN

.LISTON

.LIST OFF

.OR

.PG

Applesoft Tool Kit

ASC
ow
Not Used
EQU
EQU
DFB
CHN
LSTON
LIST OFF
ORG
PAGE

121

E
Interfacing vvith the

Monitor, DOS,
And Applesoft BASIC

Good programming techniques dictate using available routines
whenever possible. Fortunately, the Apple II has several useful routines
built into it. The monitor ROM is full of usable subroutines, and DOS
performs several useful functions. Applesoft contains many powerful
routines.

THE MONITOR

The Apple II monitor ROM has many useful subroutines available.
There are routines to input material, routines for LORES graphics, and
routines to move and verify blocks of memory, beep the speaker, set up
a delay, handle interrupts, and much more. Some of these routines are
listed and described in the new Apple II reference manual.

Using monitor subroutines from assembly language programs is
usually easy. To set up the routine, place the appropriate values in cer
tain memory locations and registers, then use a JSR instruction to jump
to the routine's entry point.

For example, there's a subroutine located at $F800 named " PLOT."
It will plot one LORES "box" at the specified horizontal and vertical
coordinates. To use it, first set the accumulator to the line desired (0 to
23), and the Y register to the column desired (0 to 39). Then, a JSR

123

124 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

to PLOT will plot the point. For setting up other routines, see the
references cited in Appendix B.

DOS

To access DOS from assembly language routines, some documentation
on how DOS works is needed. Some information appears in the Apple
DOS reference manual and other references described in Appendix B.

BASIC

Applesoft BASIC contains many powerful routines that can be called
from assembly language programs. Of particular interest are the high
resolution graphics routines. A good article that explains their locations
is "Applesoft II Firmware Card Hi-Res Routines," by Steve Alex, in
the October 1979 issue of Call A.P.P.L.E.

Other types of routines available are floating point math and text
interpretation routines. These are both reasonably complex topics and
probably should not be attempted by beginners. However, an excellent
article documenting most of Applesoft's internals is "Applesoft Internal
Entry Points," by John Crossley, in the March/ April 1980 issue of the
Apple Orchard.

Of course, most BASIC/ Assembly interfacing will be done the other
way around (that is, calling assembly language routines from BASIC).
The calling aspect is relatively straightforward; it is the passing of values
that causes the trouble. An article on this topic is "Passing Values in
Applesoft BASIC," by R. M. Mottola, in Nibble, Volume 1 No. 5.

The value of these books and magazines is obvious. They cover many
of the topics you 'II want to know about as you become more proficient
in assembly language programming.

F
Summary of 6502

Instruction Set
Included in this appendix is a tabular representation of the 6502 instruc
tion set. The following abbreviations are used for status headings:

S Sign or Negative status
V Overflow status
B Break status
D Decimal Mode status
I Interrupt Disable status
Z Zero status
C Carry status

The following symbols are used throughout the status column:

(blank)

x
0

1

6

Operation does not affect status

Operation affects status

Operation clears status

Operation sets status

Operation reflects bit 6 of memory location

125

1 26 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

7

addr

[addr + 1,addr]

addrl6

data

<lisp

label

PC(HI)

PC(LO)

pp

qq

[l

[(]]

+

Operation reflects bit 7 of memory location

Eight bits of absolute or base address

The address constructed from the contents of memory loca
tions addr and addr+ 1. This address is used in post-indexed
indirect adddressing.

Sixteen bits of absolute or base address

Eight bits of immediate data

An 8-bit, signed address displacement

16-bit absolute address, destination of Jump or Jump-to-
Subroutine

The high-order eight bits of the Program Counter

The low-order eight bits of the Program Counter

The second byte of a two- or three-byte instruction object
code

The third byte of a three-byte object code

Contents of the memory location designated inside the
brackets. For example, [FFFE] represents the contents of
memory location FFFE16; [addrl6+X] represents the con
tents of the location adddressed by adding the contents of
register X to addrl6; [SP] represents the value at the top of
the Stack (contents of the memory location addressed by the
Stack Pointer).

Indirect addressing: the contents of the memory byte
addressed by the contents of the memory location desig
nated within the inner brackets. For example, [[addr+ X]]
represents the contents of a memory location addressed via
pre-indexed indirect ad9ressing.

Addition - either unsigned binary addition or BCD addi
tion, depending on the condition of the Decimal Mode
status.

Binary or BCD subtraction, performed by adding the two's
complement of the subtrahend to the minuend.

The one's complement of the quality denoted beneath the
bar; for example, A represents the complement of the con
tents of the accumulator; C represents the complement of
the value of the Carry status.

/\ Logical AND

V Logical OR

.:+ Logical Exclusive-OR

Data is transferred in the direction of the arrow.

Table F-1 . Summary of the 6502 Instruction Set

Clock
Status

Type Instruction Object Code Bytes Operation Performed
Periods s v D I z c

LOA Load Accumulator from memory .

addr A5 pp 2 3 x x A- [addr] Zero page direct

addr,X B5 pp 2 4 x x A- [addr+XI Zero page indexed

{addr,X) A1 pp 2 6 x x A-[[addr+Xll Pre-indexed indirect

{addrl.Y B1 pp 2 5· x x A-[[addr+ 1,addrJ+vJ Post-indexed indirect

addr16 AD ppqq 3 4 x x A- (addr16] Extended direct

addr16,X or Y 11011x01 ppqq 3 4• x x A-(addr16+X] or A-[addr16+Y] Absolute indexed

STA Store Accumulator to memory.

.. addr 85 PP 2 3 (addr] - A Zero page direct .. addr,X 95 pp 2 4 (addr+Xl-A Zero page indexed
c .. {addr,X) 81 pp 2 6 [[addr+Xll-A Pre-indexed indirect

~ .. {addrl.Y 91 pp 2 6 [[addr+1.addr]+Yl-A Post-indexed direct
a:
> addr16 SD ppqq 3 4 (addr16]-A E><tended direct

~ addr16,X or Y 10011x01 ppqq 3 5 (addr16+XJ-A or (addr16+YJ-A Absolute indexed
E ..
:l!! Load Index Register X from memory. Index through Register Y only.
> LOX
:; addr A6 pp 2 3 x x X-(addr] Zero page direct

E
A. addr.Y B6 pp 2 4 x x X-(addr+YI Zero page indexed

"" addr16 AE ppqq 3 4 x x X-(addr16] Extended direct

c
addr16.Y BE ppqq 3 X-laddr16+YI Absolute indexed • 4· x x

g
STX Store Index Register X to memory. Index through Register Y only .

addr 86 pp 2 3 [addr] -X Zero page direct

addr,Y 96 pp 2 4 [addr+YJ- x Zero page indexed

addr16 SE ppqq 3 4 [addr16]-X Extended direct

LOY Load Index Register Y from memory. Index through Register X only.

addr A4 pp 2 3 x x Y-[addr] Zero page direct

addr,X B4 pp 2 4 x x Y-[addr+XI Zero page indexed

addr16 AC ppqq 3 4 x x Y-[addr16] Extended direct

addr16,X BC ppqq 3 4· x x Y-laddr16+XI Absolute indexed

• Add one clock period if page boundary is crossed. In the object code. " x" designates the Index register: x = 0 for

Register Y. x = 1 for Register X.

)>
-0
-0
m z
0 x ,,
{/)

c
s:
s:
)>
:JJ
-<
0 ,,
(])
(J1

0
N

z
{/)
-I
:JJ
c
()
-I
0
z
{/)
m
-I ...
N

Type

~~
~ .
• ill
:E ..,
.. :s
~ g
·.: ~
... c
.., f
c • . -g:

!
f • 8 .. :s
E • !
3
c

i • a: ..
~ ..
:E
~ . ..,
c
0

" •
"'

Instruction

STY

addr
addr,X

addr16

ADC

addr
addr,X

laddr,X)

laddr),Y

addr16

addr16.X or Y

AND
addr

addr,X

laddr,X)

laddrl.Y

addr16

addr 16.X or Y

SIT

addr

addr16

Table F-1. Summary of the 6502 Instruction Set (Continued)

Object Code

S4 PP
94 PP

SC ppqq

65 pp

75 pp

61 pp

71 pp
6D ppqq

01111x01 ppqq

25 pp

35 pp

21 pp
31 pp

20 ppqq

00111x01 ppqq

24 pp

2C ppqq

Bytes

2
2
3

2

2

2
2
3
3

2

2

2

2

3
3

Clock

Periods

3
4
4

3
4

6
5·

4
4•

3
4
6
5·

4
4•

3
4

s v

x x
x x
x x
x x
x x
x x

x
x
x
x
x
x

6
6

Status

DI I z c

x x
x x
x x
x x
x x
x x

x
x
x
x
x
x

x
x

Operation Performed

Store Index Register Y to memory. Index through Register X only.

[addr)-Y Zero page direct

[addr+Xl-Y Zero page indexed
[addr16)-Y Extended direct

Add contents of memory location, with carry, to those of Accumulator .

A-A+[addr]+C Zero page direct

A-A+(addr+X)+C Zero page indexed

A-A+((addr+Xll+C
A-A+((addr+1 , addr]+Y]+C

A-A+(addr16]+C

Pre- indexed indirect

Post-indexed indirect

Extended direct

A-A+(addr16+X]+C or A-A+(addr16+Y]+C Absolute indexed
(Zero flag is not valid in Decimal Mode) .

AND contents of Accumulator with those of memory location .

A-Ai\laddr] Zero page direct
A-Ai\(addr+X]

A-Ai\((addr+X)]

A-Ai\lladdr+l , addr]+Y]

A-Ai\laddr161

A-Ai\(addr16+X] or A-Ai\(addr16+Y]

Zero page indexed

Pre- inde>ted indirect

Post-indexed indirect

Extended direct

Absolute indexed

ANO contents of Accumulator with those of memory location. Only the status

bits are affected .

Ai\(addr)

Ai\[addr16]
Zero page direct

Extended direct

·Add one clock period if page boundary is crossed. In the object code. " x" designates the Index register: x = 0 for

Register Y. x = 1 for Register X.

....
N
00

)>
(/)
(/)
m s:
Cll
r
-<
r
)>
z
Gl
c
)>
Gl
m
""tJ
::0
0
Gl
::0
)>

s:
s:
z
Gl
"TI
0
::0 ...,
I
m
)>
""tJ
""tJ
r
m

Table F- 1. Sum mary of the 6502 Instruct ion Set (Continued)

Clock
Status

Type Instruction Object Code Bytes Operation Performed
Periods s v 0 I z c

CMP Compare contents of Accumulator with those of memory location. Only the

status bits are affected.

addr CS PP 2 3 x x x A-[addr! Zero page direct

addr.X DS pp 2 4 x x x A-[addr+XI Zero page indexed

laddr.XJ Cl pp 2 6 x x x A-[[addr+Xll Pre-indexed indirect
;; laddrl.Y _ Dl pp 2 s· x x x A -[[addr+ l . addr]+Y) Post-indexed indirect • ~ addr16 CD ppqq 3 4 x x x A-[addr16) Extended direct
.!:
c
0

addrl 6.X or Y 11011x01 ppqq 3 4· x x x A-[addrl 6+X) or A-[addrl 6+YJ Absolute indexed

.\:!

! EOR Exclusive-OR contents of Accumulator with those of memory location.

l! addr 45 pp 2 3 x x A-A-¥{addr) Zero page direct
• <> addr.X 55 pp 2 4 x x A-A-¥{addr+X) Zero page indexed
0 ,. laddr.XI 41 pp 2 6 x x A-A-¥{[addr+Xll Pre-indexed indirect
l; (addrl.Y 51 PP 2 s· x x A-A-¥{[addr+ 1, addr[+Y) Post-indexed indirect
E .. addrl 6 4D ppqq 3 4 x x A-A-¥!addr16) Extended direct
~ addr 16,X or Y 01011 x01 ppqq 3 4• x x A-A-¥!addr16+X) or A-A-¥{addr16+Y) Absolute indexed
• u
c
f ORA OR contents of Accumulator with those of memory location. • • addr 05 PP 2 3 x x A -AV[addr) Zero page direct
a:

addr.X 15 pp 2 4 x x A-AV[addr+ XI Zero page indexed >
l; laddr.XJ 01 pp 2 6 x x A-AV!laddr+Xll Pre-indexed indirect
E

(addrl .Y 11 pp 2 x x A - AV!laddr+ 1. addr)+Y) • s· Post-indexed indirect
~ addr16 OD ppqq 3 4 x x A-AV[addrl 6) Extended direct
~ addr 16,X or Y 00011x01 ppqq 3 4• x x A-AV[addr16+X) or A-AV[addr16+Y) Absolute indexed .. .,,
c
0
u •
"'

• Add one clock period if page boundary is crossed. In the object code. "x" designates the Index register: x = 0 for

Register Y, x = 1 for Register X.

)>

" " m
z
0 x ,,
(./)

c
s:
s:
)>
:0
-<
0 ,,
O'J
C.11
0

"' z
(./)
---l
:0
c
n
---l
6 z
(./)
m
---l

....&

N
co

Table F-1. Summary of the 6502 Instruction Set (Continued)

Clock
Status

Type Instruction Object Code Bytes Operation Performed
Periods s v D I z c

SBC Subtract contents of memory location, with borrow. from contents of Ac-

cumultor.

addr E5 pp 2 3 x x x x A - A-[addr)-C° Zero page direct

addr.X F5 pp 2 4 x x x x A - A-[addr+X) -C° Zero page indeKed

(addr.XI E1 pp 2 6 x x x x A - A-Uaddr+Xll-C Pre-indexed indirect

;; (addr).Y F1 pp 2 5• x x x x A -A-[[addr+1 ,addrl+Y)-C Post-indexed indirect
• addr16 ED ppqq 3 4 x x A - A-(addr161-C Extended direct " x x c:
c ~ddrl 6.X or Y 11111x01 ppqq 3 4· x x x x A - A-(addr16+X)-C or
0 A - A- [addr16+Y)-C Absolute indexed g

!
{Note that Carry value is the complement of the borrow.I .

:;;
INC Increment contents of memory location. Index through Register X only.

"' 0 addr E6 pp 2 5 x x (addrJ-(addr)+ 1 Zero page direct

~ addr.X F6 pp 2 6 x x (addr+X)-(addr+XJ+ 1 Zero page indexed
E addr16 EE ppqq 3 6 x x (addr16)-(addrl 6)+ 1 Extended direct • ! addr16,X FE ppqq 3 7 x x (addr16 +X)-[addr16+X)+ 1 Absolute indexed

• u
c:

DEC Decrement contents of memory location . Index through Register X only . •
~ addr C6 pp 2 5 x x [addr)-(addr)-1 Zero page direct
IC addr.X D6 pp 2 6 x x [addr+X)-[addr+X)-1 Zero page indexed

~ addr16 CE ppqq 3 6 x x [addr16)-[addr16)-1 Extended direct
E addr16,X DE ppqq 3 7 x x [addrl 6+X)-[addr16+X)-1 Absolute indexed • :i; ,.

CPX Compare contents of X register with those of memory location . Only the status ;; ..,
flags are affected. c:

0
addr E4 pp 2 X-[addr) u 3 x x x Zero page direct • .. addr16 EC ppqq 3 4 x x x X-[addr16) Extended direct

CPY Compare contents of Y register with those of memory location. Only the status

flags are affected.

addr C4 pp 2 3 x x x Y-[addr) Zero page direct

addr16 cc ppqq 3 4 x x x Y-[addr16) Extended direct

• Add one clock period if page boundary is crossed. In the object code, "x" designates the Index register: x = 0 for

Register Y, x = 1 for Register X.

...
w
0

)>
(./)
(./)
m
~
co
r
-<
r
)>
z
Gl
c
)>
Gl
m
-i:J
:ll
0
Gl
:ll
)>

~
~
z
Gl ,,
0
:ll
-t
I
m
)>
-i:J
-i:J
r
m

Type Instruction Object Code

AOL

addr 26 pp
addr,X 36 pp
addr16 2E ppqq

-.; addr16,X 3E ppqq ..
~

-~
c
0

2

!
\! ROA ..
a,
0

~ addr 66 pp
E addr,X 76 pp ..
! addr16 6E PP .. addr16,X 7E ppqq
" c ..
~ ..
>
l;
E .. ASL
:i;
> :.

addr 06 pp ,,
c
0 addr,X 16 pp u .. addr16 OE ppqq "' addr16,X 1 E ppqq

Table F-1. Summary of the 6502 Instruction Set (Contin ued)

Clock
Status

Bytes . Operation Performed
Periods s v D I z c

Rotate contents of memory location one bit left through Carry. 1.ndex through

Register X only.

2 5 x x x (addrl

2 6 x x x (addr+XI

3 6 x x x [addr16l

3 7 x x x (addr16+XI

CEH7 .. o ~
Rotate contents of memory location one bit right, through Carry. Index through

Register X only.

2 5 x x x (addr)

2 6 x x x [addr+ XI

3 6 x x x [addr16l

3 7 x x x [addr16+X]

lEH 1 ~ o ~
Arithmetic shift left contents of memory location. Index through Register X

only.

2 5 x x x (addrl

2 6 x x x (addr+XI

3 6 x x x (addr 16l

3 7 x x x (addr16+XI

~o

)>
'1J
'1J
m z
0 x ,,
(/)

c
$:
$:
)>
:J:J
-<
0 ,,
Ol
(J1

0
N

z
(/)

-I
:J:J
c
()
-I
6 z
(/)
m
-I

....
w

Type Instruction

...: ":! LSR
• c
"' 0 addr .. ~
~- addr.X
E ! addr16 • !!
~ & addr16.X
~o .. ,.. .., ~

c 0
o E
CJ •

:~

LOA data

LOX data

LOY data

! • :;;
• E
.E

Table F-1 . Summary of the 6502 Instruction Set (Continued)

Clock Status
Object Code Bytes

Periods
Operation Performed

s v 0 I z c

Logical shift right contents of memory location . Index through Register X only.

4 6 pp 2 5 0 x x [addrl

56 pp 2 6 0 x x [addr+X]

4E ppqq 3 6 0 x x [addr16]

5E ppqq 3 7 0 x x [addr16.Xl

o~

A9 pp 2 2 x x Load Accumulator with immediate data.

A- data

A2 pp 2 2 x x Load Index Register X with immediate data.

X-data

AO pp 2 2 x x Load Index Register Y with immediate data.

Y-data

....
w
N

:l>
Cf)
Cf)
m
:;;::
CD
r
-<
r
:l> z
Cl
c
:l>
Cl
m
-c
:a
0
Cl
:a
:l>
:;;::
~
z
Cl ,.,
0
:a
--!
I
m
:l>
-c
-c
r m

Type Instruction Object Code

ADC data 69 pp

AND data 29 pp

CMP data C9 pp
! ..
~ EOR data 49 pp Q.
0
! ORA data 09 pp ..
;; ..
E
E SBC data E9 pp
-

CPX data EO PP

CPY data CO pp

JMP label 4C ppqq

Ila bell 6C ppqq

Q.
E
" ..,

Table F-1. Summary of the 6502 Instruction Set (Continued)

Clock Status
Bytes

Periods
Operation Performed

s v D I z c

2 2 x x x x Add immediate with Carry, to Accumulator. The Zero flag is not valid in

Decimal Mode.

A- A+data+C

2 2 x x ANO immediate with Accumulator.

A-AAdata

2 2 x x x Compare immediate with Accumulator. Only the status flags are affected.
A-data

2 2 x x Exclusive-OR immediate with Accumulator

A-A->.1-data

2 2 x x OR immediate w ith Accumulator.

A-AV data
2 2 x x x x Subtract immediate, with borrow. from Accumulator.

A-A-data-C

(Note that Carry value is the complement of the borrow.)

2 2 x x x Compare immediate with Index Register X . Only the status flags are affected.

X-data

2 2 x x x Compare immediate with Index Register Y. Only the status flags are affected.

Y-data

3 3 Jump to new location, using extended or indirect addressing.

3 5 PC-label or PC- (label]

)>
<J
<J
m
z
0 x
" en
c
s:
s:
)>
::D
-<
0

" (J)
(J1
0
N

z
en
-i
::D
c
(")
-i
6
z
en
m
-i ...
w
w

Table F-1. Summary of the 6502 Instruction Set (Continued)

Clock
S ta tus

Type Instruction Object Code By tes Operation Performed
Periods s v D I z c

Note the following for all Branch-on-Condition instructions:

If the condition is satisfied. the displacement is added to the Program

Counter after the Program Counter has been incremented to point to the in-

struction following the Branch instruction.

BCC disp 90 pp 2 2 .. Branch relative if Carry flag is cleared.

II C=O. then PC-PC+disp

BCS disp BO pp 2 2 .. Branch relative if Carry flag is set.

If C=l , then PC-PC+disp

BEQ disp FO pp 2 2 .. Branch relative if result is equal to zero.

If Z=l , then PC-PC+disp

BMI disp 30 pp 2 2 .. Branch relative if result is negative.

If 5=1 , then PC- PC+disp

c BNE disp DO PP 2 2·· Branch relative if result is not zero.
0

If Z=O, then PC-PC+disp
;;
c BPL disp 10 pp 2 2·· Branch relative if result is positive.
0
0 If S=O. then PC-PC+disp
c
0 BVC disp 50 pp 2 2·· Branch relative if Overflow f lag is cleared.
.c II V = 0 . then PC-PC+disp u
c

Branch relative if Overflow flag is set. l! BVS disp 70 pp 2 2··

"' If V= 1. then PC-PC+disp

••Add one clock period if branch occurs to location in same page; add two clock periods if branch to another page

occurs.

....
w
~

)>
(/)
(/)
m s
CD
r
-<
r
)>
z
G'l
c
)>
G'l
m

" :xi
0
G'l
:xi
)>

s
s
z
G'l
"TI
0
:xi
--i
I
m
)>

" " r
m

Type Instruction Object Code

JSR label 20 ppqq

E
a ..
IC ..,
c
u RTS 60 ..
·S
" e

.Q

" "'

TAX AA

TXA BA

.. TAY AB
>
0

::!' TYA 98

! ·;;. TSX BA ..
~

! TXS 9A

·;;. ..
IC

Table F-1. Summary of the 6502 Instruction Set (Contin ued)

Clock
Status

Bytes
Periods

Operation Performed
s v D I z c

3 6 Jum p to subroutine beginning at address given in bytes 2 and 3 of the instruc -

tion. Note that the stored Program Counter points to the last byte of the JSR in -

st ruction

ISPl-PC(HI)

ISP-11-PCILO)

SP- SP-2

PC- label

1 6 Return from subroutine, increment ing Program Counter to point t o the instruc-

t ion after the J SR which called the routine

PCILOl - ISP+ 1 I

PC(Hl)-[SP+2J

SP- SP+ 2

PC - PC+1

1 2 x x Move A ccumulato r contents to Index Register X .

X-A

1 2 x x Move contents o f Index Register X to Accumulato r.

A - X

1 2 x x Move Accumulator contents to Index Register Y

Y-A

1 2 x x Move contents of Index Register Y to Accumulator,

A - Y

1 2 x x Move contents of Stack Pointer to Index Register X

X- SP

1 2 Move contents of Index Reg ister X to Stack Pointer.

SP-X

)>
-0
-0
m
z
0 x
"
(/)

c
s:
s:
)>
::u
-<
0
" Q)
(J1

0
N

z
(/)

-I
::u
c
()
-I
0
z
(/)
m
-I -w
CJ1

Type Instruction

DEX

DEY

INX

INY

AOL A

..
;; • ROA A
"' 0

~ .. ·;, ..
CZ:

ASL A

LSR A

Table F-1. Summary of the 6502 Instruction Set (Continued)

Clock
Status

Object Code Bytes Periods
Operation Performed

s v 0 I z c

CA 1 2 x x Decrement contents of Index Register X.
x-x-1

BB 1 2 x x Decrement contents of Index Register Y.
Y-Y-1

EB 1 2 x x Increment contents of Index Register X

X-X+l

CB 1 2 x x Increment contents of Index Register Y

Y-Y+l

2A 1 2 x x x Rotate contents of Accumulator left through Carry

lEH 1 .. 0 iJ
A

6A 1 2 x x x Rotate contents of Accumulator right. through Carry

L:EH7 .. o ~
A

OA 1 2 x x x Arithmetic shift left contents of Accumulator.

~o
A

4A 1 2 0 x x Logical shift right contents of Accumulator.

D~
A

-w
en
)>
(/)
(/)
m s
Cll
r
-<
r
)>
z
Cl
c
)>
Cl
m
"1J
:rJ
0
Cl
:rJ
)>

s s
z
G) ,,
0
:rJ
-I
I
m
)>
"1J
"1J
r
m

Type Instruction Object Code

PHA 48

PLA 68

,,
u .. u; PHP 08

PLP 28

CLI 58

SEI 78

RTI 40

a.
E
! BAK 00 ;

Table F-l. Summary of the 6502 Instruction Set (Continued)

Clock Status
Bytes Operation Performed

Periods s v D I z c

1 3 Push Accumulator contents onto Stack.

ISPl-A
SP-SP-1

1 4 x x Load Accumulator from top of Stack ("Pull").

A-[SP+1l

SP-SP+1
1 3 Push Status register contents onto Stack.

[SPl-P
SP-SP-1

1 4 x x x x x x Load Status register from top of Stack ("Pull"}.

P-ISP+1l
SP-SP+1

1 2 0 Enable interrupts by clearing interrupt disable bit of Status register.

1-0
1 2 1 Disable interrupts

1-1
1 6 x x x x x x Return from interrupt; restore Status

P-[SP+ll
PC(LOl-ISP+21
PC(Hl)-[SP+3l

SP-SP+3
PC - PC+l

1 7 1 Programmed interrupt . BAK cannot be disabled. The Program Counter is incre-

mented twice before it is saved on the Stack.
[SPl-PC(Hll
ISP-11-PC(LOI
[SP-21-P
SP-SP-3
PC(Hll-[FFFFl
PC(LOl-[FFFEl
1- 1
B- 1

)>

" " m
z
0 x .,.,
(./)

c
s:
s:
)>
:l)

-<
0 .,.,
Ol
(.Tl
0
N

z
(./)
-I
:l)

c
n
-I
i5 z
(./)
m
-I

....
w

Type Instruction

CLC

SEC

..
;! CLO ..
u;

SED

CLV

NOP

Table F-1 . Summary of the 6502 Inst ruct ion Set (Contin ued)

Clock
Status

Object Code Bytes
Periods s v D I z c

.,

18 1 2 0 Clear Carry flag

c-o
38 1 2 1 Set Carry flag

C-1

DB 1 2 0 Clear Decimal Mode
D-0

FB 1 2 1 Set Decimal Mode
D- 1

·as 1 2 0 Clear Overf low flag

v-o

EA 1 2 No Operation

Operation Performed

-w
ClO

)>
(/)
(/)
m
s::
CD
r
-<
r
)>
z
Gl
c
)>
Gl
m
-0
:JJ
0
Gl
:JJ
)>

s::
s::
z
Gl ,,
0
:JJ
-I
I
m
)>
-0
-0
r
m

Index

A

ABSOLUTE addressing mode, 60-63
Accumulator, 36, 37-40, 44

as arithmetic register of 6502, 49
move operations for, 40
outputting contents of in hex, 40-41
storage of values in, 40
use for arithmetic and logical functions, 48
use of in INDEXED addressing mode,

80-81
ADC, 59

ABSOLUTE addressing mode, 60
function of, 45, 48

Addition
binary, 51
decimal, 50
two's complement, 54-55

Address field, 20
AND

and the accumulator, 95 - 96
function of, 93

ANDgate
function as logic gate, 95-96

Apple
sources of information on programming of,

116
Apple 6502 assembler/editor, 120
Apple II

assemblers available for, 119-120
firmware bug in, 103

Apple II monitor ROM
routines of, 123 - 124

Applesoft
internal routine OUTDO, 83
treatment of positive and negative integers, 91

Applesoft BASIC Programming Reference
Manual, ix

A register. S ee Accumulator
ASC-ASCII string

function of, 79
ASCII string data, 81
ASL

function of, 93
Assembler

definition of, l
description of, 18
error messages of, 19
function of, 1
use of in storing object code, 31

Assembler directives
as mnemonics, 31

Assembler directive comparison
chart, 121

Assembly
process of, 18

Assembly language
compared to BASIC, 10, 17 - 18
debugging in, compared to BASIC, 101
ease of learning, VIII
mnemonics in, 9
source code lines, 8

Assembly language code
fields, 8- 10
tools for writing, 7
writing of, 7-10

139

140 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

Assembly language code fields
comment, 10
label, 8-9
line number, 8
mnemonic, 9
operand, 9-10

Assembly language data statements
compared to BASIC DATA statement, 81

Assembly language program
illustration of, 19

Assembly language programming
books on, 117-118

Assembly listing
assembler directives in, 81
printing of, 28
6502 instructions in, 81

B

BASIC
assembly language, similarities and

differences between , 10,
17-18

routines of, 124
BCC

function of, 65- 66
BCS

function of, 65- 66
BEQ

function of, 65-67, 71
BIT

discussion of, 111
BM!

function of, 91
BNE

function of, 65-66, 71
BPL

function of, 91
Branch instructions

use in performing loops, 67
use of relative addressing in, 70

Branching
assembly language compared to BASIC, 66
out of range error in, 70-71

BRK
and BASIC STOP command, 102-103
elimination of, 103
function of, 101
use of in assembling long programs, 103

BYS
discussion of, 111 - 112

BVT
discussion of, 112

c
Carry flag, 49, 51-57, 72

purpose in 6502, 51, 67
in shift operations, 98

CLC
function of, 45, 47
and IMPLIED addressing mode, 59

CLD
discussion of, 112

Clear
definition of, 50

CL!
discussion of, 112

CLY
discussion of, 112

CMP
function of, 65, 79

Code
ease of entering and editing in assemblers, 11
entering and editing in assemblers, 11-15
testing of, 33

Comment lines
insertion of blank, 27

Comment
producing a whole line of, 26

Compare instructions
function of, 72 - 73

Computer programming
primary law of, VIII

Conditional branch instruction, 66-67
Conditional branches

instruction op-code, 70
CPX

function of, 65, 79
CPY

function of, 65

D

DEC, 59
function of, 45 - 46

Decimal values
converting to hexadecimal, 4

DEX
function of, 45, 47

DEY
function of, 45, 47
and IMPLIED addressing mode, 59

DOS
information on workups of, 124

E

. Entry points, 88
EOR

and the accumulator, 96-97
function of, 93
logical operation of, 96- 97

EPZ
use of, 25

EQU
use of, 25, 31
use of to generate symbol table, 30

EQUATE
as assembler directive, 31
use of, 30

F

Fields
space between, 26

Flag

G

as part of microprocessor, 49
break, 49
command, 49
decimal, 49
Interrupt Disable, 49
overflow, 49
sign, 49
Zero, 49

Graphics
clearing of, 75- 77

H

Hex dump field, 20
Hexadecimal numbers

explanation of, 2- 5
Hexadecimal system

compared with decimal system, 3 - 5
counting in, 3

Hexadecimal values
converting to decimal, 4
use of digits and letters in , 3-5

IMMEDIATE addressing mode, 60- 62
IMPLIED addressing mode, 59-60
INC, 59

function of, 45-46
INDEXED addressing mode

and ABSOLUTE mode, 80-81
use of accumulator in, 80-81
limitation of, 83
use in run-time specification of values, 80
use in sequential retrieval of date, 80-81

INDEXED INDIRECT addressing mode,
88-89
compared to INDIRECT INDEXED

addressing mode, 88- 89
INDIRECT INDEXED addressing mode ,

83-89
compared to BASIC's HGR, 85-87
use in indexing anywhere in memory, 84-85

INX
function of, 45 - 46
and IMPLIED addressing mode, 59

!NY
function of, 45 -46

J

JMP
discussion of, 112
function of, 65-66, 71

JSR, 70

INDEX 141

effect on contents of stack, 108
compared to BASIC's GOSUB, 108
function of, 105

L

Label, 8-9
functions of, 9

Label format
advantages over BASIC program , 24

Labeling
use in subroutines, 69

Labels
Assembly language compared to BASIC,

24-25
for constantly used addresses , 24
use of, 23- 28
use of existing, 25

LOA, 59
and ABSOLUTE addressing mode, 60
function of, 37, 40

LDX, 59
function of, 37

LOY, 59
function of, 37

Line number, 8
as aid to editing, 8

LISA
compared to BASIC, 11-15

LISA assembler, 11-15, 119
LISA COMMAND mode

ASM, 12-13
ASM, description of, 13
commands of, 12-15
CTRL-D, 12-13, 15, 19
CTRL-D, description of, 13
CTRL-E, 12-15
CTRL-E, description of, 13
DELETE, 12-13
DELETE, description of, 13
INSERT, 12-15
INSERT, description of, 12
LIST, 12, 14-15
LIST, description of, 12
NEW, 13, 15
NEW, description of, 13
SAVE, 12-13
SA VE, description of, 13

LISA text editor
features of, 13-14
functions of, 13- 14

Load, 37-43
moving material to implement, 40-42

142 ASSEMBLY LANGUAGE PROGRAMMING FOR THE APPLE II

Logic gate
definition of, 95

Logical instructions
applications for, 100

Logical operations
and bytes, 93, 95
use of, 93

Looping
assembly language compared to BASIC, 66

LORES graphics screen, 75
LSR

function of, 93

M

Machine code
location of, 30

Machine code field , 20
Math

double precision, 52-53
precision, in assembly language

programming, 52
single byte, 52
single-precision, 52-53
two byte, 52

Mnemonic
as part of 6502 assembly language, 9

Mnemonics, viii
definition of, l

N

Negative flag
operation of, 91-92
and Zero flag, 92

NOP
function of, 101

0
Object code

description of, 18
read and executed by 6502, 30
saving of, 20-21, 32
testing of, 21

Object file, 18
Offset, 70
Operand, 9-10
OR

and the accumulator, 96
as logic function, 96

ORA
function of, 93

ORIGIN
use of, 31 - 33

p

PHA
function of, 105
suited for temporary storage, 107

PHP
discussion of, 113

PLA
function of, l 05
suited for temporary storage, 107-108

PLP
discussion of, 113

Printer
how to turn on and off, 28

Program
finding length of, 20

Program counter field, 20
in sample assembly listing, 30

Pseudo-op
EQUATE as, 31

Pseudo-ops, viii

R

Registers
concept of, 35-6
description of, 36
in 6502, 36
use of in memory-to-memory move

operations, 36
Relative addressing

definition of, 70
ROL

function of, 93
ROR .

function of, 93
Rotate operations, 97- 100

and Accumulator mode, 98
and addressing modes, 98-99

RT!
discussion of, 113

RTS

s

effect on contents of stack, 108
compared to BASIC's RETURN, 108
function of, 106
and IMPLIED addressing mode, 59-60

SBC, 59
function of, 45, 48

S-C assembler, 120
SEC

function of, 45, 47
SED

discussion of, 113
SEI

discussion of, 113
SET

definition of, 50
Shift operations, 97 - l 00

and the accumulator mode, 98
and addressing modes, 98- 99

6502
books on programming of, 115-116
data registers in, 36
flags in, 49

6502 (continued)
magazines for programmers of, 116
and memory, 106
and negative members, 92

6502 assembly language, IX, I
6502 instruction set

addressing modes, 59-64
arithmetic operations, 45- 57
branching, 65 - 77
looping, 65 - 77
debugging, 101-103
equivalent values, 91-92
INDEXED addressing, 79-89
loading, 37-44
logic functions, 93-100
Negative flag, 91-92
the stack, 105-109
storing, 37-44
transfers, 37-44

6502 instruction set (tables), 125-137
6502 machine language code, ix, l
Source code

description of, 18
Source code lines

fields of, 8, 20
Source file, 18

how to save, 27
Source program

assembly of, 18-21
reloading, 19

STA, 59
function of, 37

Stack
access to, l 06
advantage of temporary saves on, 107
definition of, 106
as last-in, first-out device, 107

Starting address
finding, 20

Store, 37 - 43
moving material to implement, 40-42

STX, 59
function of, 37

STY, 59
and ABSOLUTE addressing mode, 60
function of, 37

Subroutine
labeling of, 69

Subtraction

INDEX 143

example of double-precision, 56- 57
example of single-precision, 55-56
using 6502, 54-57

Symbol table, 20
Symbol tables, viii

T

TAX
function of, 37

TAY
function of, 37

TI Programmer
use of, 7
where to buy, 7

TLA assembler, 120
Transfer, 37-43

moving material to implement, 40-42
TSK

discussion of, 113- 114
TXA

function of, 37
and IMPLIED addressing mode, 59

TYA
function of, 37

x
X register, 36, 37-39, 43 - 44, 83

as index register, 49
in INDEXED addressing mode, 79-81

y

Y register, 36, 37-39, 43-44, 84
as index register, 49
in INDEXED addressing mode, 79

z
Zero flag

function of, 67, 72
ZERO PAGE addressing mode, 61-64

reservations on use of, 64
memory locations, 84, 87

Other OSBORNE/McGraw-Hill Publications

An Introduction to Microcomputers: Volume 0 - The Beginner's Book
An Introduction to Microcomputers: Volume 1 - Basic Concepts, 2nd Edition

An Introduction to Microcomputers: Volume 3 - Some Real Support Devices

Osborne 4 & 8-Bit Microprocessor Handbook

Osborne 16-Bit Microprocessor Handbook

8089 1/0 Processor Handbook

CRT Controller Handbook

68000 Microprocessor Handbook
8080A/8085 Assembly Language Programming

6800 Assembly Language Programming

Z80 Assembly Language Programming

6502 Assembly Language Programming

Z8000 Assembly Language Programming

6809 Assembly Language Programming

Running Wild - The Next Industrial Revolution

The 8086 Book
PET™ and the IEEE 488 Bus (GPIB)

PET™/CBM™ Personal Computer Guide, 2nd Edition
PET™ Fun and Games

Business System Buyer's Guide

Osborne CP/M® User Guide
Apple II® User's Guide

Microprocessors for Measurement and Control

Some Common BASIC Programs

Some Common BASIC Programs - PET™/CBM™ Edition

Some Common BASIC Programs - Atari® Edition

Some Common BASIC Programs - TRS-80™ Level II Edition

Some Common BASIC Programs - Apple II® Edition
Practical BASIC Programs

Practical BASIC Programs - TRS-80™ Level II Edition

Practical BASIC Programs - Apple II® Edition
Payroll with Cost Accounting

Accounts Payable and Accounts Receivable
General Ledger

CBASIC™ User Guide

Science & Engineering Programs - Apple II® Edition

Interfacing to S-100/IEEE 696 Microcomputer

A User Guide to the UNIX™ System
Wordstar™ Made Easy

6502 Assembly Language Subroutine

Discover FORTH

	Assembly Language Programming for the Apple II
	Contents
	Acknowledgments
	Introduction
	1: The Assembler and Hexadecimal Numbers
	2: Writing Code
	3: Entering and Editing Code
	4: Assembling a Source Program
	5: Using Labels
	6: Making the Program Run at Different Locations
	7: The Comcept of Registers
	8: Loads, Stores, and Transfers
	9: Simple Arithmetic Operations
	10: Different Addressing Modes
	11: Branching and Looping
	12: Indexed Addressing
	13: Equivalent Values and the Negative Flag
	14: Logic Functions
	15: Debugging Instructions
	16: The Stack
	Appendix A: Instructions Not Covers in This Book
	Appendix B: Where to Go From Here
	Appendix C: Some Apple II Assemblers
	Appendix D: LISA, Applesoft Tool Kit, and S-C Assembler Directives
	Appendix E: Interfacing with the Monitor, DOS, and Applesoft BASIC
	Appendix F: Summary of 6502 Instruction Set
	Index
	Other OSBORNE/McGraw-Hill Publications

